GUJARAT TECHNOLOGICAL UNIVERSITY

P.D.D.C. Sem- I Remedial Examination March / April 2010

 Subject code: X 10001
 Subject Name: Mathematics – I

 Date: 30 / 03 / 2010
 Time: 12.00 noon – 2.30 pm

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** Do as directed.
 - (a) Find the unit normal vector to the surface $x^2 + y^2 + z^2 = 7$ at (1, -1, 2).
 - **(b)** Trace the curve $y^2(2a x) = x^3$.
 - (c) Solve $(x^2 + y^2 a^2)xdx + (x^2 + y^2 b^2)ydy = 0$.
 - (d) Determine rank of the following matrix by row echelon form.

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 6 \\ 4 & 6 & 8 & 10 \\ 7 & 10 & 13 & 16 \end{bmatrix}$$

- (e) Find the inverse of the matrix
 - $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$, using gauss-Jordan method.
- **Q.2** Attempt the following:
 - (a) Solve x + y + 2z = 92x + 4y - 3z = 1

3x + 6y - 5z = 0 by Gaussian elimination and back substitution.

(b) Find the eigen values and eigen vectors of the matrix

$$A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$$

(c) Solve the following differential equations:

(i)
$$\frac{dy}{dx} = \cos x \cos y - \sin x \sin y.$$

(ii)
$$\left(1 + e^{\frac{x}{y}}\right) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0.$$

OR

(c) Solve the following differential equations:

(i)
$$\frac{dy}{dx} + 2y \tan x = \sin x$$
 given that $y = 0$ when $x = \frac{\pi}{3}$

(ii)
$$\frac{dy}{dx} + \frac{1}{x}y = x^2y^6$$

03

04

Q.3 Attempt the following:

(a) If
$$v = \log r$$
, where $r^2 = x^2 + y^2$, show that

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

(b) If
$$u = \tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$$
, show that

(i)
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$$

(ii)
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 2\sin u \cos 3u$$

(c) If
$$r = \sqrt{x^2 + y^2}$$
, $\theta = \tan^{-1} \frac{y}{x}$, evaluate $\frac{\partial(r, \theta)}{\partial(x, y)}$.

OR

Q.3 Attempt the following:

(a) If
$$u = \log (\tan x + \tan y + \tan z)$$
, prove that
$$\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z} = 0$$

(b) Find the maximum and minimum values of
$$x^3 + 3xy^2 - 3x^2 - 3y^2 + 4.$$

(c) The period of a simple pendulum is given by
$$T = 2\pi \sqrt{\frac{l}{g}}$$
.

If T is computed using l = 8 ft, g = 32 ft/sec^2 , find approximate error in T if true values are l = 8.05 ft and g = 32.01 ft/sec^2 .

Q.4 Attempt the following:

(a) Evaluate $\iint_R xydydx$ where R is the positive quadrant of the circle 05 $x^2 + y^2 = a^2$.

(b) change the order of integration in the integral
$$\int_{0}^{\frac{x^2}{2a^4a}} xydydx$$

and hence evaluate it.

(c) Evaluate
$$\iint_{z=0}^{1} \int_{z=z}^{z+z} (x+y+z) dy dx dz$$
.

OR

Q.4 Attempt the following:

(a) Evaluate
$$\int_{0}^{a} \int_{0}^{\sqrt{a^2 - y^2}} (x^2 + y^2) dx dy$$
 by changing into polar co-ordinates

- **(b)** By double integration, find the area common to the curves $y^2 = 8x$ and **05** $x^2 = 8y$.
- (c) Find the volume of the solid bounded by the surfaces x = 0, y = 0, z = 0 and x + y + z = 1.

Q.5 Attempt the following:

(a) A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 5 where t is the 05 time. Find the component of its velocity and acceleration at time t = 1 in the direction $\hat{i} + \hat{j} + 3\hat{k}$.

05

- **(b)** A vector field is given by $\overline{F} = (x^2 + xy^2)\hat{i} + (y^2 + x^2y)\hat{j}$. Show that \overline{F} is irrotational and find its scalar potential.
- (c) The current i flowing in the circuit containing resistance R, inductance L and 04 e.m.f E Satisfies the differential equation $L\frac{di}{dt} + Ri = E$. Prove that

$$i = \frac{E}{R} \left(1 - e^{\frac{-Rt}{L}} \right)$$
, if $i = 0$, when $t = 0$.

OR

Q.5 Attempt the following:

- (a) Using the line integral, compute the work done by the force $\overline{F} = y\hat{i} + xz\hat{j} x\hat{k}$ When it moves a particle from the point (0, 0, 0) to the point (2, 1, 1) along the Curve $x = 2t^2$, y = t, $z = t^3$.
- (b) Verify Green's theorem in the plane for $\oint_c (2x y^2) dx xy dy$, where c is the boundary of the region enclosed by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$.
- (c) Find the orthogonal trajectories of the circles $(x-a)^2 + y^2 = a^2$.
