Seat No.:	Enrolment No.
Seal NO	Enforment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

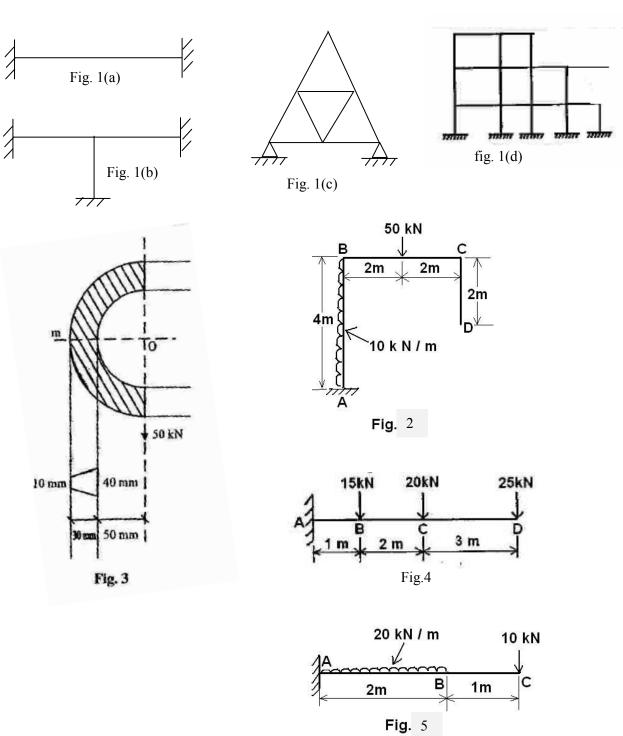
B. E. Sem - IV Examination - June- 2011

Subject code: 140101

Subject Name: Aircraft structure-1

Date:08/06/2011 Time: 10.30 am – 01.00 pm Total Marks: 70

•	4		. •		
In	str	110	tıa	n	S:


1.	Attem	ot all	questions.
----	-------	--------	------------

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a) (b) (c) (d)	Find static indeterminacy of structures given in figure 1 (a , b , c , d) Find kinematic indeterminacy of structures given in figure 1 (a , b , c , d) Explain the Principle of Super position with its statement. Explain Hook stress	04 04 04 02
Q.2	(a)	What do you mean by Plane-stress condition? With help of example explain that stress is tensor quantity.	07
	(b)	Analyse the plane frame as shown in figure 2. Draw shear force diagram, Bending moment diagram, and axial force diagram. OR	07
	(b)	A space-curved bar of circular in cross section is loaded as shown in figure 3 . Calculate maximum and Minimum stresses at the critical section p-q	07
Q.3	(a)	Define Moment area theorems.	02
~	(b)	Derive the differential equation of deflected curve.	05
	(c)	Calculate slope and deflection at point D for the beam as shown in figure 4 using Macaulay's method. Take $EI = 32000 \text{ kN.m}^2$. OR	07
Q.3	(a)	Which points should be take care while using Macaulay's Method.	02
	(b)	Find Slope and Deflection at the free end of the cantilever beam subjected to	05
	(-)	uniformly distributed load over the entire span.	07
	(c)	Calculate slope and deflection at point C for the beam as shown in figure 5 using conjugate beam method. Take $EI = 32000 \text{ kN.m}^2$.	07
Q.4	(a)	Define strain energy, Proof resilience and modulus of resilience	03
	(b)	Derive the equation of the strain energy stored in a member due to Shear.	04
	(c)	Calculate the strain energy in a bar 3m long and 40mm diameter, when it is subjected to a tensile load of 100KN. What will then a modulus of resilience of the material of the bar?	07
		OR	
Q.4	(a)	Define Crippling load, Slenderness ratio, Crushing load	03
	(b)	Derive Euler's crippling load formula for the long column pinned at both ends.	04
	(c)	A square column of size 500mm depth and 350 mm width, 4.2 m in length with its both ends are hinged. Find it's load carrying capacity of the column by 1) Euler's formula 2) Rankine's formula. Take $f_c\!=\!320$ N/mm² , $E=2$ x 10^5 N/mm² , $\alpha=1/8000$	07
Q.5	(a) (b)	Starting from fundamental equation derive equation of equilibrium. State function of fibers and classify composite materials.	07 07

(b) Define composite material. Compare metallic material with composite material.
