Seat No.: Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-1st Regular Examination January 2011

Subject code: 110008 **Subject Name: Mathematics I**

Date:11/ 01 /2011 Time: 10.30 am - 01.00 pm

Total Marks: 70

Instructions:

ii)

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** Do as Directed Can the Rolle's theorem for $f(x) = |x|, x \in [-1,1]$ applied? i) 02 02 ii) If $\frac{1}{2} - \frac{x^2}{24} < \frac{1 - \cos x}{x^2} < \frac{1}{2}$ hold for values of x close to zero, find $\lim_{x \to 0} \frac{1 - \cos x}{x^2}$ Find the absolute maximum and minimum value of $f(x) = x^{2/3}$ on the interval iii) 02 Find c of the Mean Value theorem for $f(x) = \log x$; $x \in [1, e]$ 02 iv) 02 v) Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ vi) 02 Prove that $\int_{0}^{3} (x^2 - x) dx \ge 0$ Find the values of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the point(4,-5) if $f(x, y) = x^2 + 3xy + y - 1$ 02 Find parametric equation of the line joining (-3,2) and (2,-1)Q.2 (a) 01 i) ii) Expand $\sin(x+h)(y+k)$ by Taylor's Series 02 iii) 02 If $u = \cos ec^{-1} \left(\frac{x+y}{x^2+y^2} \right)$, Show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$ Obtain $\operatorname{curl} \vec{F}$ at the point (2,0,3), $\vec{F} = ze^{2xy} \overline{i} + 2xy \cos y \, \overline{j} + (x+2y) \overline{k}$ 02 iv) **(b)** 04 i) Trace the curve $y = 2x + \frac{x^2}{2} - \frac{x^3}{2}$

(b) i) Trace the curve
$$r = a(1 + \cos \theta)$$
; $a > 0$

Verify Cauchy's Mean value theorem for $2x^3$ and x^6 , $x \in [a,b], a > 0$

- 04 i) ii) 03 Find the Taylor's series generated by $f(x) = \frac{1}{x}$ at a=2. Where, if anywhere does the series converge to $\frac{1}{r}$?
- 04 Q.3 (a) Does the sequence whose n^{th} term is $a_n = \left(\frac{n+1}{n-1}\right)^n$ converge? if so, find $\lim_{n \to \infty} a_n$

03

		ii)	$\binom{n}{2}$, n odd	03
			If $a_n = \begin{cases} \frac{n}{2^n}, n \text{ odd} \\ \frac{1}{2^n}, n \text{ even} \end{cases}$ does $\sum a_n$ converges?	
	(b)	i)	The region between the curve $y = \sqrt{x}$, $0 \le x \le 4$ and the x-axis is revolved	04
		::1	about the x-axis to generate a solid. Find its volume. Prove that $R(x, y) = R(x, y) + R(y, y)$	02
		ii)	Prove that $\beta(m,n) = \beta(m+1,n) + \beta(m,n+1)$ OR	03
Q.3	(a)	i)	For the function $f(x) = x + x^2$ find a formula for the upper sum obtained by dividing the interval [0,1] into n equal subintervals, then take a limit of these sums as $n \to \infty$ to calculate the area under the curve over [0,1]	04
		ii)		03
		•	Test the Convergence for the series $\sum_{n=1}^{\infty} \frac{4^n n! n!}{(2n)!}$	
	(b)	i)	Evaluate $\int_{0}^{1} x^{m} (\log x)^{n} dx$, where n is a positive integer and m>1	04
		ii)	Find the length of the curve $y = x^{3/2}, 0 \le x \le 1$	03
Q.4	(a)		Find the greatest and smallest values that the function $f(x, y) = xy$ takes on	05
			the ellipse $\frac{x^2}{8} + \frac{y^2}{2} = 1$	
	(b)		If $u = f(r)$ where $r^2 = x^2 + y^2$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$	05
	(c)		Evaluate $\iint_{\mathbb{R}} x^2 dA$, where R is the region in the first quadrant bounded by the	04
			hyperbola $xy = 16$ and the lines $y = x, y = 0$ and $x = 8$. OR	
Q.4	(a)		Find a point within a triangle such that the sum of the squares of its distances from the three vertices is a minimum	05
	(b)		Find the point on the plane $x + 2y + 3z = 13$ closest to the point $(1,1,1)$	05
	(c)		Evaluate $\int_0^{4a} \int_{x_{/4a}}^{2\sqrt{ax}} dy dx$ by changing the order of integration	04
Q.5	(a)		Integrate $f(x, y) = x^2 + y^2$ over the triangular region with vertices $(0,0),(1,0)$ and $(0,1)$	05
	(b)		Find the directional derivative of $div\vec{F}$ at (2,2,1) in the direction of normal to the sphere $x^2 + y^2 + z^2 = 9$, where $\vec{F} = x^2z\vec{i} + xy^2\vec{j} + yz^2\vec{k}$	05
	(c)		Find the area of the surface cut from the bottom of the paraboloid	04
	(-)		$x^2 + y^2 - z = 0$ by the plane $z = 4$	-
			OR	
Q.5	(a)		Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes $y + z = 4$ and $z = 0$	05
	(b)		Find the angle between the surface $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point (2,-1,2)	05
	(c)		Verify Stoke's theorem for $\vec{F} = y\vec{i} + z\vec{j} + x\vec{k}$, where S is the upper half of the	04
			sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary ***********************************	