## **GUJARAT TECHNOLOGICAL UNIVERSITY**

## **BE SEM-IV Examination-Nov/Dec-2011**

Subject code: 140001 Date: 21/11/2011

**Subject Name: Mathematics-4** 

Time: 02.30 pm -5.30 pm Total marks: 70

## **Instructions:**

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** Do as Directed:

14

- (i) Show that  $f(z) = z \operatorname{Im}(z)$  is differentiable only at z = 0 and f'(0) = 0.
- (ii) Find the principal argument of  $z = \frac{-2}{1 + i\sqrt{3}}$ .
- (iii) Find and plot all the roots of  $(1+i)^{\frac{1}{3}}$ .
- (iv) Show that the set of values of  $\log(i^2)$  is not the same as the set of values  $2\log i$ .
- (v) Find the maclurin series representation of  $f(z) = \sin z$  in the region  $|z| < \infty$ .
- (vi) Evaluate  $\int_{0}^{4+2i} z dz$  along the curve  $z = t^2 + it$ .
- (vii) Find the residue at z = 0 of  $f(z) = z \cos \frac{1}{z}$ .
- Q.2 (a) (i) Evaluate  $\int_{0}^{1} \frac{dx}{1+x^2}$ , using trapezoidal rule with h = 0.2.

03

04

- (ii) Compute *f*(8) from the following values using Newton's Divided difference formula.
- x
   4
   5
   7
   10
   11
   13

   f(x)
   48
   100
   244
   900
   1210
   2028
- **(b)**

03

- (i) Perform the five iterations of the bisection method to Obtain a root of the equation  $f(x) = x^3 x 1 = 0$ .
- (ii) Solve the following system of equations by Gauss-Seidel Method correct to three decimal places.

04

$$2x + y + 54z = 110$$

$$27x + 6y - z = 85$$

$$6x + 15y + 2z = 72$$

$$x+y+z=7$$
$$3x+3y+4z=24$$
$$2x+y+3z=16$$

(ii) Find the dominant eigen value of 
$$A = \begin{bmatrix} 2 & 3 \\ 5 & 4 \end{bmatrix}$$
 by power Method.

- Q.3 (a) Define mobius transformation .Also find the image of the circle |z|=1 in the 05 w-plane under the mobius transformation  $\omega = f(z) = \frac{z-i}{1-iz}$ . Also find the fixed points of f.
  - **(b)** Attempt the following:
    - (i) State Cauchy's integral formula and hence evaluate  $\int_{c}^{c} \frac{\sin 3z}{z + \frac{\pi}{2}} dz$  where C is the circle |z| = 5.
    - (ii) Show that  $u(x,y) = e^{x^2-y^2}\cos(2xy)$  is harmonic everywhere and find a conjugate harmonic for u(x,y).
    - (iii) Expand  $f(z) = \frac{1}{(z+1)(z+3)}$  in Laurent's series in the interval 1 < |z| < 3.

Q.3 (a) Evaluate 
$$\iint_C \frac{dz}{\sinh 2z}$$
, where  $C: |z| = 2$ .

(b) (i) Using the residue theorem, evaluate 
$$\int_{0}^{2\pi} \frac{4d\theta}{5 + 4\sin\theta}$$
.

- (ii) Prove that all the roots of  $z^7 5z^3 + 12 = 0$  lie between the Circles |z| = 1 and |z| = 2, using Rouche's theorem.
- (iii) Find the principal value of  $\left[\frac{e}{2}(-1-i\sqrt{3})\right]^{3\pi i}$ .
- Q.4 (a) (i) Using Lagrange's formula to fit a polynomial to the data

| X | -1 | 0 | 2 | 3  |
|---|----|---|---|----|
| у | 8  | 3 | 1 | 12 |

And hence find y(x = 2).

(ii) A river is 80 meters wide. The depth 'd' in meters at a distance x meters from one bank is given by the following table calculate the area of cross-section of the

river using Simpson's  $\frac{1}{3}^{rd}$  rule

| X | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
|---|---|----|----|----|----|----|----|----|----|
| d | 0 | 4  | 7  | 9  | 12 | 15 | 14 | 8  | 3  |

04

03

09

05

04

Using improved Euler's method, solve  $\frac{dy}{dx} = 1 - y$  with the initial condition y(0) = 0 and tabulate the solutions at x = 0.1, 0.2. Compare the answer with exact solution.

OR

- Q.4 (a) Evaluate  $\int_{0}^{1} \frac{dt}{1+t}$  by the Gaussian formula with one point, two point and three points.
  - (b) (i) Find the value of  $\sin 52^{\circ}$  from the following table  $\frac{\theta^{\circ}}{\sin \theta^{\circ}} = \frac{45^{\circ}}{0.7071} = \frac{50^{\circ}}{0.7660} = \frac{55^{\circ}}{0.8192} = \frac{60^{\circ}}{0.8660}$ 
    - (ii) Find to four decimal places, the smallest root of the equation  $\sin x = e^{-x}$  using the Newton-Raphson starting With  $x_0 = 0.6$ .
- Q.5 (a) (i)Given:  $10 \frac{dy}{dx} = x^2 + y^2$ , y(0) = 1. Using fourth order Runga -Kutta method. Find y (0.2) with h=0.1. (ii) Use Euler's method to obtain an approximate value of y(0.4) For the equation y' = x + y, y(0) = 1 with h=0.1.
  - (b) Evaluate the integral  $\int_{4}^{5.2} \log_e x dx$  using Simpson's  $\frac{3}{8}^{th}$  rule.

OR

- Q.5 (a) (i) Find the image of the region bounded by  $1 \le r \le 2$  and  $\frac{\pi}{6} \le \theta \le \frac{\pi}{3}$  in the z-plane under the transformation  $w = z^2$ . Show the regions graphically. (ii) Check whether the function  $f(z) = \sin z$  is analytic or not. If analytic, find its derivative.
  - Evaluate  $\int_{C} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2 (z-2)} dz \text{ where C is the circle } |z| = 3.$

\*\*\*\*\*

05