Seat I	No.: _	Enrolment No	_
Subj	ect l	GUJARAT TECHNOLOGICAL UNIVERSITY BE SEM-IV Examination-Nov/Dec-2011 code: 142001 Date: 05/12/2011 Name: Kinematics & Dynamics Of Machines .30 pm -5.00 pm Total marks: 70	
Instru	ction 1. 2.	•	
Q.1	(a) (b)	What are quick return mechanisms? Where are they used? Discuss the functioning of any one of them. Distinguish between (i) Mechanism and machine (ii) Kinematics and dynamics (iii) Lower pair and higher pair	07 07
Q.2	(a) (b)	rad/sec in counter clockwise. The length of the connecting road is 1600 mm. When the crank turns 60° from the inner dead centre, by graphical method determine the (i) Velocity of the slider (ii) Velocity of a point E located at a distance 450mm on the connecting rod extended. (iii) Position and velocity of a point F on the connecting rod having the least absolute velocity. (iv) Angular velocity of the connecting rod. (v) Velocity of rubbing at the pins of the crankshaft, crank and the cross-head having diameter 80, 60 and 100 mm respectively.	07
	(b)	OR	07
Q.3	(a) (b)	Explain the effect of creep and initial tension in belt drive.	07 07

OR

Q.3 (a) Explain static and dynamic balancing.

1

	(b)	A, B, C and D are four masses carried by a rotating shaft at radii 100, 125, 200 and 150 mm respectively. The planes in which the masses revolve are spaced 600 mm apart and the mass of B, C and D are 10 kg, 5 kg, and 4 kg respectively. Find the required mass A and the relative angular settings of the four masses so that the shaft shall be in complete balance.	07
Q.4	(a)	Derive an expression for the minimum number of teeth required on the pinion in order to avoid interference in involute gear teeth when it meshes with wheel.	07
	(b)	Differentiate between Involute and Cycloidal gear tooth profile. Explain law of gearing.	07
		OR	
Q.4	(a)	Explain the effect of the gyroscopic couple on a two wheeled vehicle when taking a turn.	07
	(b)	The mass of the turbine rotor of a ship is 20 tonnes and has a radius of gyration of 0.60 m. Its speed is 2000 r.p.m. The ship pitches 6° above and 6° below the horizontal position. A complete oscillation takes 30 seconds and the motion is simple harmonic. Determine the following: 1. Maximum gyroscopic couple, 2. Maximum angular acceleration of the ship during pitching, and 3. The direction in which the bow will tend to turn when rising, if the rotation of the rotor is clockwise when looking from the left.	07
Q.5	(a) (b)	Explain vibration isolation. A cam is to give the following motion to a knife-edged follower: 1. Outstroke during 60° of cam rotation, 2. Dwell for the next 30° of cam rotation, 3. Return stroke during next 60° of cam rotation, and 4. Dwell for the remaining 210° of cam rotation. The stroke of the follower is 40 mm and the minimum radius of the cam is 50 mm. The follower moves with uniform velocity during both the outstroke and return strokes. Draw the profile of the cam when the axis of the follower passes through the axis of the cam shaft. OR	07 07
0.5	(a)		07
Q.5	(a)	Define and explain with neat sketch Base circle, Prime circle, Pressure angle, Pitch curve and Pitch point related to cam and follower.	07
	(b)	Design a cam for operating the exhaust valve of an oil engine. It is	07

7 required to give equal uniform acceleration and retardation during opening and closing of the valve each of which corresponds to 60° of cam rotation. The valve must remain in the fully open position for 20° of cam rotation. The lift of the valve is 37.5 mm and the least radius of the cam is

40 mm. The follower is provided with a roller of radius 20 mm and its line of stroke passes through the axis of the cam.
