Seat No.:	Enrolment No.

Subject code: 151003

GUJARAT TECHNOLOGICAL UNIVERSITY B.E SEM-V Examination-Nov/Dec.-2011

Date: 24/11/2011

•	Subject Name: Integrated Circuits and Application Time: 02.30 pm-05.00 pm Total marks: 70			
1. 2. 3.	Atte Mak	: mpt all questions. The suitable assumptions wherever necessary. Theres to the right indicate full marks.		
Q.1	(a)	(i)Draw and explain the block diagram of Op-Amp.(ii)What are the characteristics of an ideal op-amp? Draw its equivalent circuit along with voltage transfer curve.	07	
	(b)	Derive the formula for voltage gain, input resistance, output resistance and bandwidth for voltage series feedback amplifier using op-amp.	07	
Q.2	(a)	Explain the application of op-amp as a subtractor and summing amplifier using differential configuration.	07	
	(b)	The op-amp is used as an inverting amplifier, with the following specifications:	07	
		$\frac{\Delta V_{io}}{\Delta T} = 30 \mu \text{V/°C}, \ \frac{\Delta I_{io}}{\Delta T} = 10 \text{ nA/°C}, \ V_s = \pm 15 \text{V}$ $R_1 = 100 \ \Omega, \ R_F = 8.2 \ k\Omega, \ R_L = 10 k \ \Omega.$ Assume that the amplifier is nulled at 25 °C. If V_{in} is a 20mV peak sine wave at 100Hz: (a) Calculate E_v and V_o values at 45°C. (b) Draw the output voltage waveform at 25°C and 45°C.		
	(b)	OR Design an input offset voltage compensating network for the inverting amplifier with R_1 = 100 Ω and R_F = 4.7 k Ω . The op-amp is LM307 with V_{io} = 10 mV and supply voltages \pm 10V.	07	
Q.3	(a)	Explain with necessary diagrams the working of Absolute value output circuit.	07	
	(b)	Explain the following application of op-amp. (1) Small signal Half wave rectifier (2) Peak Detector	07	
		OR		
Q.3	(a)	Explain the application of op-amp as a positive and negative clipper circuit.	07	
	(b)	Explain how op-amp can be used as a differentiator. Discuss the sources of error. Draw and explain practical differentiator circuit.	07	
Q.4	(a)	Explain working of a stable multivibrator using IC 555. Design the same for the output frequency of 10 kHz with a duty cycle of 25%.	07	
	(b)	Draw and explain square wave generator using op-amp. OR	07	

(a) Using the LM 317, design an adjustable voltage regulator to satisfy the 07 **Q.4** following specifications: output voltage $V_o = 10$ to 12V and $I_o = 200$ mA. For LM 317, $I_{ADJ} = 100 \mu A$. Draw the complete schematic diagram of the designed regulator. Describe the working principle of phase-locked loop with basic blocks. Discuss its application as a frequency multiplier. **Q.5** Write short note on Sallen key circuit. **07** (a) Design a Biquard bandpass filter with a center frequency of $w_0 = 1000$ **07** rad/s and a bandwidth of 200 rad/s. The midband gain H = 1. OR **Q.5** For the following set of Butterworth LPF specifications. **07** $\alpha_{min} = 20 \text{ dB},$ $\alpha_{\text{max}} = 0.5 \text{ dB}$, $W_p = 1000 \text{ rad/sec},$ $W_s = 2000 \text{ rad/sec}$ Determine: (1) Order of Butterworth LPF (2) Pole locations and corresponding Qs (3) Half Power frequency

its application as a current controlled Integrator.

(b) List the applications of Operational tranconductance amplifier. Explain 07