Seat No.:	Enrolment No

GUJARAT TECHNOLOGICAL UNIVERSITY BE SEM-VI Examination-Nov/Dec-2011

Subject code: 160202 Subject Name: Automobile Heat Transfer			Date: 23/11/2011	
•		.30 am -1.00 pm Total marks	: 70	
Instru	1. 2.	s: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a) (b)		07 07	
Q.2	(a) (b)	one dimensional steady state heat conduction with uniform heat generation.	07 07	
		used. OR		
	(b)		07	
Q.3	(a)	Explain the circumstances under which natural convection occurs. Differentiate between natural and forced convection.	07	
	(b)	Explain the physical significance of (a) Reynolds number (b) Prandtl number (c) Nusselt number. OR	07	
Q.3	(a)	2	07	
	(b)	-	07	
Q.4	(a)	Explain the film condensation. Write some industrial applications of condensation.	07	
	(b)	Explain the Phenomenon of boiling and also mention some applications. OR	07	
Q.4	(a)		07	
	(b)		07	

Q.5	(a)	Explain the terms: Fouling factor, Effectiveness, NTU, LMTD.	07
	(b)	Drive an expression for the LMTD of a parallel flow heat exchanger.	07
		OR	
Q.5	(a)	It is desired to cool oil from 120 °C to 50 °C using double pipe heat	07
		exchanger. The cooling water enters the heat exchanger at 20 °C and leaves	
		it at 40 °C. Calculate the LMTD for parallel and counter flow arrangement.	

(b) Oil at 100 °C (Cp=3.6 kJ/kg K) flows at a rate of 30,000 kg/h and enters 07 into a parallel flow heat exchanger. Cooling water (Cp= 4.2 kJ/kg K) enters the heat exchanger at 10 °C at a rate of 50,000 kg/h. The heat transfer area is 10 m² and U=1000 W/m²K. Calculate the outlet temperature of oil and water.