|                                                                                                                                                                                                                                                                                                                                          | No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Enrolment No  GUJARAT TECHNOLOGICAL UNIVERSITY  BE- Ist /IInd SEMESTER-EXAMINATION - MAY/JUNE - 2012  code: 110005  Date: 09/06/2012                                                                                                               |                       |                     |                 |       |                           |                                                   |   |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|-----------------|-------|---------------------------|---------------------------------------------------|---|----------|
| Subject Name: Elements of Electrical E                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                    |                       |                     |                 |       |                           |                                                   |   |          |
|                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0:30 am – 01                                                                                                                                                                                                                                       |                       |                     | Total Marks: 70 |       |                           |                                                   | ) |          |
|                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ctions:                                                                                                                                                                                                                                            | •                     |                     |                 |       |                           |                                                   |   |          |
| 3                                                                                                                                                                                                                                                                                                                                        | 2. M<br>3. Fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ttempt any five<br>lake suitable as<br>igures to the rig<br>ach question ca                                                                                                                                                                        | sumption ght indicate | ns wherevate full m |                 | sary. |                           |                                                   |   |          |
| Q.1                                                                                                                                                                                                                                                                                                                                      | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Define Temperature co-efficient of resistance. Derive & obtain the expression $\alpha_2 = 1/(1/\alpha_1 + (t_2-t_1))$ with usual notation.                                                                                                         |                       |                     |                 |       |                           |                                                   |   | 06       |
| <ul> <li>(b) Explain the method of transforming a delta connected network</li> <li>(c) Two wires of conducting material (different conducting material in parallel. They share current in the ratio 5:6. If the wire of times length &amp; double the cross section area than that of material of their specific resistances.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                    |                       |                     |                 |       | cting mater<br>ne wire of | naterials) are connected (e of material 1 has 1.7 |   |          |
| Q.2                                                                                                                                                                                                                                                                                                                                      | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                    |                       |                     |                 |       |                           |                                                   |   | 03       |
|                                                                                                                                                                                                                                                                                                                                          | <i>(</i> 1.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1) Magneto Motive Force (M.M.F.) (2) Reluctance (3) Magnetic Field Intensity.                                                                                                                                                                     |                       |                     |                 |       |                           |                                                   |   | 0.4      |
|                                                                                                                                                                                                                                                                                                                                          | <ul> <li>(b) Define and derive the co-efficient of self inductance.</li> <li>(c) A magnetic circuit is made of mild steel arranged as shown in fig.1. The central limb is wound with 500 turns and has cross section of 800 mm². Each of the outer limbs has a cross section of 500 mm². The air gap has a length of 1 mm. Calculate the current required to set-up a flux of 1.3 mWb in the central limb assuming magnetic leakage and fringing. The mean lengths of various path are as shown in the fig. 1. B-H curve for mild steel is as follows:  B (Wb/m²) 1 1.1 1.2 1.3 1.4 1.5 1.625 H (AT/m) 400 500 650 850 1250 2000 3800</li> </ul> |                                                                                                                                                                                                                                                    |                       |                     |                 |       |                           |                                                   |   | 04<br>07 |
| Q.3                                                                                                                                                                                                                                                                                                                                      | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                    |                       | _                   |                 |       |                           |                                                   |   | 03       |
|                                                                                                                                                                                                                                                                                                                                          | (I-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>(1) Electric Field Intensity (2) Electric Potential (3) Electric Flux Density.</li> <li>The equivalent capacitance of two capacitors when connected in series is 0.03 μF</li> </ul>                                                       |                       |                     |                 |       |                           |                                                   |   |          |
|                                                                                                                                                                                                                                                                                                                                          | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | & when connecapacitors.                                                                                                                                                                                                                            |                       |                     |                 |       |                           |                                                   |   | 04       |
|                                                                                                                                                                                                                                                                                                                                          | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Capacitor of 50 $\mu$ F in series with 100 Ohm resistor with suddenly connected across 100 volts DC supply. Find (1) Time constant of the circuit (2) Initial Current (3) Current Equation as a function of time (4) Voltage across resistor after |                       |                     |                 |       |                           |                                                   |   |          |

**Q.4** (a) Obtain the relation  $L = (L_1L_2 - M^2)/(L_1+L_2+2M)$  for equivalent inductance when

two inductors are connected in parallel such that the mutually induced emf

When a voltage v=350  $\cos (3000t - 20^\circ)$  volts is applied to this series combination, the current flowing is  $i = 15 \cos (3000t - 60^\circ)$  ampere. Find the values of R & C.

(b) A resistance R, inductance L = 0.5 H and a capacitance C are connected in series.

6 m.sec.

opposes the self induced emf.

06

**08** 

- Q.5 (a) Explain the phenomena of electrical resonance in R –L –C series circuit connected to variable frequency supply. Draw relevant vector diagram& define Q factor of the circuit.
  - (b) Established relationship between line and phase voltages and currents in balanced delta connection. Draw complete phasor diagram of voltages and currents.
- Q. 6 (a) Draw & explain staircase wiring with necessary sketch.
  - (b) Show that the power input to the three phase circuit can be measured by two **05** wattmeters connected properly in the circuit.
  - (c) Calculate the RMS value & average value of the voltage wave for the fig.2 shown. 05
- **Q. 7** (a) List various protective devices used in the electrical circuit. Write a brief note on ELCB.
  - (b) Using schematic diagram, briefly explain charging of battery from AC supply. 05
  - (c) List lumens requirements for various categories of illumination.

Figure No. 1:

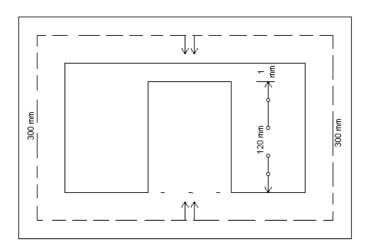
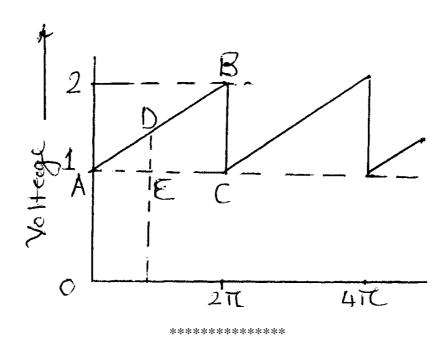




Figure No. 2:



05

04