Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE SEM-III Examination May 2012

Subject code: 130903

Subject Name: Electrical and Electronics Measuring Instruments

Date: 08/05/2012 Time: 02.30 pm – 05.00 pm

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.

	3.	Figures to the right indicate full marks.	
Q.1	(a)	Define and explain in brief the following terms related to measurement system:	04
		(i) Accuracy (ii) Resolution (iii) Precision (iv) Error.	
	(b)	Derive the dimension of the following quantities using fundamental units of	03
		LMTI system:	
	(-)	(i) E.M.F. (ii) Magnetic flux density (iii) Permittivity.	0.4
	(c)	What is a standard of measurement? Describe various standards of measurements.	04
	(d)	Describe primary standard of capacitance having concentric cylindrical	
	(u)	structure.	03
Q.2	(a)	What is galvanometer? Sketch and explain the construction and working of D'Arsonval type galvanometer.	07
	(b)	The Ayrton universal shunt has a total resistance of 8 K Ω and galvanometer	03
	(D)	has a resistance of 4 K Ω . Determine the multiplying power of shunt for 2 K Ω , 3 K Ω and 6 K Ω tapping.	03
		OR	
	(b)	What are the shunts and multipliers? Mention their application.	03
	(c)	Describe in short the operating forces acting on indicating instrument for its proper functioning.	04
		OR	
	(c)	Describe in short the various effects utilize in the operation of indicating type analog instruments.	04
0.1	(-)		07
Q.3	(a)	Sketch and explain the construction and working of 1-Ø electro-	07

- Q.3 (a) Sketch and explain the construction and working of 1-Ø electrodynamometer type power factor meter.
 - (b) Describe the construction and working of Weston type frequency meter. 07
- Q.3 (a) Why PMMC type instruments are widely used? Discuss their merits and demerits.
 - (b) Sketch and explain the construction and working of attracted disc typeKelvin absolute electrometer.

Q.4	(a)	Describe in brief the various factors responsible for causing error in reading of dynamometer type wattmeter .	07
	(b)	Show that in two wattmeter method of power measurement for 3-Ø balanced load system, the total power consumed is the sum of reading of two wattmeters.	07
		OR	
Q.4	(a) (b)	Describe the construction and operation of 1-Ø induction type energy meter. What are the causes of error in induction type energy meter? How these errors can be compensated?	07 07
Q.5	(a)	Explain with neat circuit diagram, the calibration of wattmeter using d. c. potentiometer.	07
	(b)	Describe the construction and operation of co-ordinate type Gall Tinsley a. c. potentiometer.	07
		OR	
Q.5	(a) (b)	Sketch and explain the block schematic of digital tachometer. What are the advantages of electronic voltmeter? Describe transistorized d. c. voltmeter using high input resistance FET.	07 07
