Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE SEM-III Examination May 2012

Subject code: 133401

Subject Name:	i nermodynamics and	I nermai Engineering
Date: 08/05/2012		Time: 02.30 pm – 05.00 pm

Total Marks: 70

1

•	4	4 •	
In	ctr	neti	ons:
111	ou	uvu	viio.

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a) (b)	Derive the expressions for "Dual combustion cycle." Explain "Clausius inequality"	07 07
Q.2	(a)	What do you mean by the term 'Entropy'? Prove that entropy is a property of a system.	07
	(b)	An engine of 250 mm bore and 375 mm stroke works on Otto cycle. The clearance volume is 0.00263 m ³ . The initial pressure and temperature are 1 bar and 50° C. If the maximum pressure is limited to 25 bar, find the following	07
		(i) The air standard efficiency of the cycle.(ii) The mean effective pressure for the cycle.Assume the ideal conditions.	
		OR	
	(b)	Derive the expressions for "Brayton cycle."	07
Q.3	(a)	The stroke and cylinder diameter of a compression ignition engine are 250 mm and 150 mm respectively. If the clearance volume is 0.0004 m ³ and fuel injection takes place at constant pressure for 5 per cent of the stroke determine the efficiency of the engine. Assume the engine working on the diesel cycle.	07
	(b)	Briefly explain the term "Steam Nozzles"	07
	()	OR	
Q.3	(a)	Explain the working principle of "Turbo-prop"	07
-	(b)	Define the following:	07
		(i) Thrust power (ii) Propulsive power (iii) Propulsive efficiency	
Q.4	(a)	Explain briefly about air refrigerator working on a reversed Carnot cycle. Derive the expression for its C.O.P.	07
	(b)	Give the comparison between a vapour compression system and a vapour	07
		absorption system.	
		OR	
Q.4	(a)	Describe briefly about the following processes:	07
	(L.)	(i) Sensible heating (ii) Cooling and dehumidification	07
	(b)	Define the following terms: (i) Down point temperature (ii) Poletive hymidity	07
		(i) Dew point temperature (ii) Relative humidity (iii) Specific humidity.	
Q.5	(a)	A reactor's wall 320 mm thick, is made up of an inner layer of fire brick ($k = 0.84 \text{ W/m}^{\circ}\text{C}$) covered with a layer of insulation ($k = 0.16 \text{ W/m}^{\circ}\text{C}$). The	07

reactor operates at a temperature of 1325°C and the ambient temperature is

		minimum heat loss. (ii) Calculate the heat loss presuming that the insulating material has a maximum temperature of 1200°C. If the calculated heat loss is not acceptable, then state whether addition of another layer of insulation would provide a satisfactory solution.	
	(b)	Explain Fourier's Law of Heat Conduction and Explain Thermal Resistance.	07
		OR	
Q.5	(a)	Explain the various types of Heat Exchangers.	07
	(b)	Define the following:	07
		(i) Emissivity	
		(ii) Stefan-Boltzmann Law	
		(iii) Wien's Displacement Law	
		-	

25°C. (i) Determine the thickness of fire brick and insulation which gives
