Seat No.: Enrolment No	
------------------------	--

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- Vth SEMESTER-EXAMINATION - MAY/JUNE - 2012

Subject code: 150902 Date: 02/06/2012

Subject Name: Power System Analysis and Simulation

Time: 02:30 pm - 05:00 pm**Total Marks: 70**

Instructions:

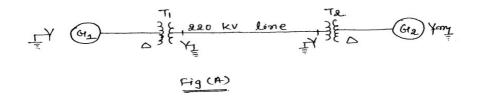
1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q-1 Draw the equivalent network of uniform long line and derive its π model.

07

(A)

- (B) Using the nominal π method, find the sending end voltage and voltage regulation of a 250 07 km,3-phase, 50 Hz transmission line delivering 25 MVA at 0.8 powerfactor (lagging) to a balanced load at 132 kv. The line conductors are spaced equilaterally 3 m apart. The conductor resistance is 0.11 ohm/km and its effective diameter is 1.6 cm. Neglect leakages.
- Q-2 The voltage across a 3-phase unbalanced load are Va = $200/40^{\circ}$, Vb = $320/190^{\circ}$, 07
- Vc=480/ 340°. Determine the symmetrical components of voltages. Phase sequence is abc. (A)
- (B) Write a brief note on phase shift of symmetrical components in Y- Δ transformer banks.
 - 07 OR
- (B) Fig.(A) shows a power system network. Draw zero sequence networks for this system. The 07 system data is as under.


Generator (G1): 50 MVA, 11KV, $X_0 = 0.08$ p.u.

Transformer (T1): 50 MVA, 11/220 KV, $X_0 = 0.1$ p.u.

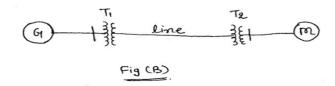
Generator (G2): 30 MVA, 11KV, $X_0 = 0.07$ p.u.

Transformer (T2): 30 MVA, 220/11 KV, X₀ =0.09 p.u.

Zero sequence reactance of line is 555.6 Ω

Q-3 Derive the double line to ground fault in a 3 phase alternator 07

(A)


- (B) An unloaded star connected solidly grounded 10 MVA, 11KV generator has positive, negative and zero sequence impedances are j1.3 Ω , j0.8 Ω , and j0.4 Ω respectively. A single line to ground fault occurs at the terminals of the generator.
 - (1) Calculate the fault current.
 - (2) Determine the value of the inductive reactance that must be inserted at the generator neutral to limit the fault current to 50% of the value obtained in (1).

Q-3 Write a brief note on selection of circuit breaker.

07

- (A)
- (B) A synchronous generator and a synchronous motor each rated 25MVA, 11KV having 15% subtransient reactance are connected through transformer and a line as shown in fig.(B).

The transformer s are rated 25 MVA, 11/66KV and 66/11 KV with leakage reactance of 10% each. The line has a reactance of 10% on a base of 25 MVA, 66 KV. The motor is drawing 15 MW at 0.8 powerfactor leading and a terminal voltage of 10.6 KV when a symmetrical three- phase fault occurs at the motor terminals. Find the subtransient current in the generator, motor and fault.

07

07

- Q-4 Discuss the advantages of per unit computations.
- (A) (B) A generator is rated 1000 MVA, 33 KV. Its star connected winding has a reactance of 0.9 p.u. 07 Find (1) Ohmic value of reactance of the winding if the generator is working in a circuit for which the bases are specified as 250MVA, 22KV (2) The p.u. value of reactance of generator winding on the specified base.

OR

- Q-4 07 Explain travelling waves of a transmission line when the receiving end is shortcircuited.
- (A) 07 (B) Write a note on zero sequence networks in brief.
- Q-5 Explain need of neutral grounding using phasor diagrams. Explain any one method of 07
- (A) neutral grounding.
- (B) Starting from the first principles, show that surges behaves as travelling waves. Find 07 expression for surge impedance and wave velocity.

Q-5 Discuss factors affecting corona.

(A) (B) Find the critical disruptive voltage and corona loss for a 3 phase line which is operating at 07 220 KV, 50 Hz frequency. The line has conductor of 1.5 cm diameter arranged in a 3 meter delta connection. Assume air density factor of 1.05 and dielectric strength of air to be 21.1 KV/cm.