Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- VI th SEMESTER-EXAMINATION – MAY- 2012				
Subject code: 160105 Date: 19/05		5/2012		
Subject Name: Computational Fluid Dynamics-II				
Time: 10:30 am – 01:00 pm Total Marks		ks: 70		
Instructions:				
		Attempt all questions.		
		Make suitable assumptions wherever necessary.		
		Figures to the right indicate full marks.		
Q.1	(a)	Explain development of upwind scheme.	07	
	(b)	State the different forms of Euler equation and also state in brief	07	
		equation of flux vector splitting.		
Q.2	(a)	Explain the inviscid flow model for Euler equation.	07	
Q. <u>2</u>	(b)	Explain the additional consideration for implicit method.	07	
	(~)	OR	•	
	(b)	Describe Osher's approximate Riemann solver.	07	
Q.3	(a)	Describe the flux difference splitting for linear advection equation .	07	
	(b)	Explain the Godunov Approach.	07	
		OR		
Q.3	(a)	Discuss the high resolution scheme.	07	
	(b)	Explain the Beam warming method.	07	
Q.4	(a)	Explain the concept of a CD nozzle with subsonic flow. Also explain the	07	
Ų.i	(u)	boundary conditions for the same	07	
	(b)	Explain the Jacobian method.	07	
		OR		
Q.4	(a)	Explain the expression for the Prandtl Mayer function for an expansion	07	
	(1.)	wave, specifying the assumptions taken.	07	
	(b)	Explain the boundary conditions for the subsonic inflow and supersonic outflow using diagram.	07	
		outron using diagram		
Q.5	(a)	Explain the physical problem of the supersonic flow over a flat plate.	07	
	(b)	Explain in brief the organization of Navier Stokes code using flow chart.	07	
		OR		
Q.5	(a)	Explain the initial and boundary conditions for the finite difference	07	
	(F.)	equation used in subsonic flow over a flat plate.	0=	
	(b)	Discuss the physical problem of subsonic-supersonic isentropic flow,	07	
		over nozzle.		
