Seat M	·	Enrolment No		
seat IV	<i>0</i>	GUJARAT TECHNOLOGICAL UNIVERSITY		
BE- VII th SEMESTER-EXAMINATION – MAY/JUNE- 2012				
Subject code: 171001 Date: 24/05/2012				
•		ame: Microwave Engineering		
	Time: 02:30 pm – 05:00 pm Total Marks: 70			
	Instructions:			
1. 2.		mpt all questions. e suitable assumptions wherever necessary.		
		res to the right indicate full marks.		
Q.1		What are microwaves? Explain advantages of microwave and its applications.	07	
	(b)	Derive necessary equations for attenuation constant and phase constant with reference to EM wave propagating along transmission line.	07	
Q.2	(a)	Sketch circular and rectangular waveguide and compare their dominant mode ,advantages and disadvantages.	07	
	(b)	The dimension of a waveguide is 2.5X1cms. The frequency is 8.6GHz Find the possible modes that can propagate through the waveguide also find the cutoff frequencies for the same.	07	
	a >	OR		
	(b)	A rectangular waveguide is filled by dielectric material of ϵ_r =9, with inside dimension of 7X3.5cm. It operates in the dominant TE ₁₀ mode. Determine (i) cut off frequency (ii) phase velocity at a frequency of 2 GHz (iii) guided wavelength at the same frequency.	07	
Q.3	(a)	Draw and explain waveguide band, corners and twist in detail with their applications.	07	
	(b)	What is the purpose of directional Coupler. Define coupling factor, directivity, isolation of Directional coupler and write expression for each. OR	07	
Q.3	(a)	A typical transmission line has a resistance of 6Ω /km, inductance of $2.2mH$ /km, a capacitance of $0.005~\mu F$ /km and a conductance of $0.05\mu m$ ho/km. Calculate the characteristic impedance, attenuation constant and phase constant of the transmission line at a frequency of $1kHz$. Alo calculate the phase velocity of the signal	07	
	(b)	Explain the operation of Magic TEE with its s-parameter. Also list some applications of magic TEE	07	
Q.4	(a)	Explain the mechanism of oscillations of Magnetron Oscillator with the aid of suitable diagram and discuss its performance characteristics.	07	
	(b)	Explain the amplification process for a helix type travelling wave tube. What are its different applications?	07	
0.4	(a)	OR Describe the construction and working of a reflex klystron. Explain how velocity	07	
Q.4	(a)	and current modulation takes place using the Applegate diagram.	U/	
	(b)	Explain the Tunnel diode characteristics with the aid of Energy band diagram.	07	
Q.5	(a)	Derive the radar range equation. Calculate the maximum range of a radar system which operates with a wavelength at 3 cm with a peak pulse power of $600KW$ if effective aperture of antenna A_e is 5 m ² , minimum detectable signal is 10^{-13} W and the radar cross sectional area of the target is 20 m^2 .	07	
	(b)	Explain Gunn effect using two valley theory.	07	
		OR		
Q.5	(a) (b)	What is a pulsed radar? Explain the pulsed radar with its block diagram. Explain IMPATT Diode with its construction, working and application.	07 07	

1