GUJARAT TECHNOLOGICAL UNIVERSITY

BE- VIIIth SEMESTER-EXAMINATION - MAY- 2012

Subject code: 180105 Date: 08/05/2012

Subject Name: High Speed Aerodynamics and Experimental Techniques

Time: 10:30 am – 01:00 pm **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Important Relations for Hypersonic Shock:

1)
$$\frac{p_2}{p_1} = \frac{2\gamma}{\gamma + 1} M_1^2 \sin^2 \beta;$$

$$\frac{\rho_2}{\rho_1} = \frac{\gamma + 1}{\gamma - 1};$$

1)
$$\frac{p_2}{p_1} = \frac{2\gamma}{\gamma + 1} M_1^2 \sin^2 \beta;$$
 $\frac{\rho_2}{\rho_1} = \frac{\gamma + 1}{\gamma - 1};$ $\frac{T_2}{T_1} = \frac{2\gamma(\gamma - 1)}{(\gamma + 1)^2} M_1^2 \sin^2 \beta$
2) $\frac{u_2}{V_1} = 1 - \frac{2\sin^2 \beta}{\gamma + 1};$ $\frac{v_2}{V_1} = \frac{\sin 2\beta}{\gamma + 1}$

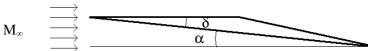
2)
$$\frac{u_2}{V_1} = 1 - \frac{2\sin^2\beta}{\gamma + 1}$$
;

$$\frac{v_2}{V_1} = \frac{\sin 2\beta}{\gamma + 1}$$

3)
$$C_P = \left(\frac{4}{\gamma + 1}\right) \sin^2 \beta$$

3)
$$C_P = \left(\frac{4}{\gamma + 1}\right) \sin^2 \beta;$$
 Also in terms of K $C_P = 2\theta^2 \left\lceil \frac{\gamma + 1}{4} + \sqrt{\left(\frac{\gamma + 1}{4}\right) + \frac{1}{k^2}} \right\rceil$

Consider $\gamma=1.4$ for all cases.


- (a) Write a short note on low density flows associated with hypersonic flow. **07** 0.1
 - Write a short note on *Lift Effect* in wind tunnels. 07
- Q.2(a) What is consequence of linearity? Explain solution by it in detail 07
 - **(b)** Explain Tangent wedge/ Tangent cone method for curved surfaces. 07

- **(b)** Explain Shock expansion technique for curved surfaces.
- Q.3 Explain conical flow method treatment for swept back wings. 07 **(b)** What are the design considerations for supersonic aircraft? 07

(a) Apply centrifugal force correction to Newtonian flow theory. **Q.3**

and ρ using oblique shock relation.

- (b) A flat plate placed in a uniform flow of $M_{\infty}=25$, where various flow 07 parameters are P_{∞} =20225 N/m² and T_{∞} =210 K. angle of attack of the plate is 4°. Calculate the downstream parameters across the shock like M, T, P, C_p
- (a) Derive co-efficient of pressure for a flat plate submerged in uniform flow at 07 **Q.4** angle α by using Newtonian flow theory.
 - (b) Calculate coefficient of lift and drag for airfoil given in the figure.

Here $\alpha=\delta$ which is 3° and free stream mach number is 18.

- (a) From equation of Newtonian flow obtain value of L/D for flat plate **Q.4**
 - (b) Derive co-efficient of pressure for hypersonic Prandtl Mayer flow in terms of 07 hypersonic similarity parameter.

07

07

07

07

Q.5	(a)	What is wind tunnel? Explain construction of subsonic open wind tunnel.	07
	(b)	How boundary layer investigation is carried out experimentally?	07
		OR	
Q.5	(a)	Explain construction & working of supersonic wind tunnels.	07
_	(b)	Enlist the optical methods of flow exploration and explain any one in detail.	07
	` ′		
