Enrolment No

GUJARAT TECHNOLOGICAL UNIVERSITY

BE SEM-VIII Examination May 2012 Subject code: 182405

	Subi	Subject code: 182405 ect Name: Digital Control of Power Processing Circuits (D. E Il	Ŋ
Dat	•	75/2012 Time: 10.30 am – 01.00 Total Marks: 70	
In	struc	tions:	
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Explain the progress of Modern Power Electronics. Also state giving proper reasons, the increased use of digital control in power electronics.	07
	(b)	Draw and explain in brief, the principle of operation of half bridge VSI along with the required basic components.	07
Q.2	(a) (b)	Elaborate the effects of switching dead times. Suggest remedies for this. Explain low level control technique of VSI using naturally sampled PWM and derive the VSI state space model. OR	07 07
	(b)	Explain low level control technique of VSI using uniformly sampled PWM. Explain how it is better than naturally sampled PWM.	07
Q.3	(a)	Explain in brief, linear current control by PI controller. Draw appropriate block diagram.	07
	(b)	Explain how single update, double update and multi sampled PWM work. Draw appropriate models.	07
		OR	
Q.3	(a)	Draw the hysteresis current control hardware organization and explain in brief, the non-linear current control by hysteresis control method.	07
	(b)	Explain how synchronization between sampling and PWM switching reduces the effect of aliasing and reconstruction errors.	07
Q.4	(a)	Draw and explain in brief, the block diagram of digital current control loop with PI regulator.	07
	(b)	Explain park's transformation with proper vector diagrams. OR	07
Q.4	(a)	Draw and explain in brief, the predictive current control implementation for VSI.	07
	(b)	Draw and explain in brief, the typical organization of 3- Φ VSI SVM based controller.	07
Q.5	(a)	Describe the $\alpha\beta$ transformation used for the analysis and modeling of 3 Φ inverters with necessary equations and graphical representation.	07
	(b)	Describe the typical organization of single Φ UPS with digital control. OR	07
Q.5	(a)	Draw only, the 3- Φ inverter output voltage vectors and their projections on π plane.	07
	(b)	Compare predictive controller with PI controller.	07

1