Seat No.:	Enrolment No.
3cut 110	Enforment 10.

GUJARAT TECHNOLOGICAL UNIVERSITY **BE - SEMESTER-IV • EXAMINATION - SUMMER 2013** Subject Code: 140504 Date: 17-06-2013 Subject Name: Fundamental of Chemical Engineering Calculations **And Stoichiometry** Time: 10:30am - 01:00pm**Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. **4. Mol. Wt:** Na = 23, K=39, O= 16, H=1, N=14, C=12, Mg=24, Ca=40. **Q.1** (a) A double effect evaporator is maintained under a vacuu of 475 mm Hg. Find 04 the absolute pressure in kPa, bar and psi. (b) A salt solution containing 6.5% salt by weight is mixed with pure water in a 05 mixer to form a diluted salt solution. Sample from the dilute solution shows 0.5% salt by weight. What is ratio of flow in the two feed streams? (c) A mixture of NaOH and KOH contains 56 % of NaOH. Calculate the content of 05 both components in the mixture in mol %. **Q.2** Explain the different methods of solving material balance problems without **07** chemical reactions with proper examples. (b) An aqueous solution of K₂CO₃ is prepared by dissolving 45 kg K₂CO₃ in 120 kg 07 water at 293 K. The density of the solution is measured to be 1.2 kg/L. Find the molarity, normality and molality of the solution. The analysis of a sewage gas sample from a municipal sewage treatment plant 07 on volume basis shows 65 % Methane, 37% Carbon dioxide, 8% Ammonia and traces of H₂S, SO₂, etc. Find: i) the average molar mass of gas; and ii) the density of gas at NTP. **Q.3** (a) Explain recycle stream, bypass stream and purge stream with a neat sketch. 07 (b) A fuel has the following composition by mass: C=85%, $H_2=14\%$ and rest non-07 combustibles. The fuel was completely burnt using 30% air in an internal combustion engine. Determine the exhaust gas composition. OR

(i) mass of CaO formed, (ii) mass of CO₂ formed per kg of limestone.

Define: i) yield, ii) limiting component, iii) excess reactant, iv) conversion,

v) selectivity, vi) inert, vii) process flow sheet.

Q.3

(a)

07

		(iii)Internal energy and external energy (iv)BOD and COD.	
	(b)	Pure methane is heated from 303K to 523K at atmospheric pressure. Calculate the heat added per kmole methane using C_P data. $C_P = a + bT + cT^2 + dT^3 \; . \text{Data for methane:} \\ a = 19.2494, b \times 10^3 = 52.1135, c \times 10^6 = 11.973, d \times 10^9 = -11.3173$ OR	06
Q.4	(a)	Define: (i) Heat of Formation (ii) Heat of Reaction (iii)Heat of Combustion (iv)Hess law.	08
	(b)	200kg of solid Cadmium at 27^{0} C is to be melted. Melting point of Cadmium is 320.9 0 C. The heat is supplied by steam (latent heat = 210 kcal/kg). Find the mass of steam to be supplied. Data: At. wt of Cadmium = 112.1 . Use $C_p = 6 + 0.005$ T kcal/kmol 0 C where T is in 0 C. Latent heat of fusion of Cadmium = 2050 kcal/kmol.	06
Q.5	(a)	Explain distillation operation with an example.	07
	(b)	A pan contains 6420kg of an aqueous solution at 104^{0} C, 29.6% of which is anhydrous sodium sulphate. The whole solution is cooled without evaporation to 20^{0} C at which temperature crystals of Na ₂ SO ₄ .10H ₂ O separate out. The remaining mother liquor is found to contain 16.1% anhydrous Na ₂ SO ₄ . What is the weight of the mother liquor?	07
Q.5	(a)	Discuss humidification operations and define some of the common terminologies used for air-water operations.	07
	(b)	A mixture containing 47.5% acetic acid and 52.5% water (by mass) is being separated by the extraction in a counter-current multistage unit. Pure iso-propyl ether is used as an solvent. The solvent to feed ratio is 1.3. The final extraction composition on a solvent free basis is found to be 82% by mass of acetic acid. The raffinate is found to contain 14% by mass of acetic acid on a solvent free basis. Calculate the percentage of acid of the origina feed which remains unextracted.	07

Q.4 (a) Differentiate between:

(i) Sensible heat and latent heat

(ii) Endothermic and exothermic reactions

2

08