Seat	No.:	Enrolment No				
		GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V • EXAMINATION – SUMMER 2013				
Sub	ject	Code: 150501 Date: 14-05-2013	Date: 14-05-2013			
Sub	ject	Name: Mass Transfer Operations - I				
			Total Marks: 70			
Instr	ruction 1. 2. 3.	ns: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.				
Q.1	(a)	Define õDiffusivityö. Derive equation for steady-state diffusion of A	07			
	(b)	through non diffusing B. Discuss film theory for prediction of mass transfer co-efficient.	07			
Q.2	(a)	Discuss in detail classification of mass transfer operations and explain with examples.	07			
	(b)	In an oxygen-nitrogen mixture at 10 atmosphere and 25°C,the concentrations of two plates of 0.2 cm apart are 10 and 20 volume % respectively. Calculate the rate of diffusion of O_2 in gm/cm ² hr,through non diffusing N_2 .	07			
		Given that $D_{O2-N2} = 0.181 \text{ cm}^2/\text{sec.}$ Take R=82.06 atm. cm ³ /gm.mole K OR				
	(b)	Define with respect to tray tower and packed tower: 1) Downspouts 2) Weir 3) Tray efficiency 4) Flooding 5) Loading 6) Entrainment 7) Tray spacing	07			
Q.3	(a)	Define : HETP. Derive equation for height of a gas transfer unit(Ht _G)	07			
	(b)	for a continuous packed absorption tower. Discuss: 1) Absorption factor 2) Number of overall gas transfer units OR	07			
Q.3	(a)	CS_2 is to be absorbed from a dilute gas mixture of CS_2 $óN_2$ into a pure non-	07			

volatile oil at atm. pressure in a counterócurrent absorber. The mole fraction of CS_2 in inlet gas stream is 0.05 and the flow rate of gas stream G, is 1500

y = 0.5x, where x is the mole fraction of CS_2 in liquid stream. It is desired

Calculate minimum value of L/G, where L is liquid flow rate in k mole/hr.

07

07

07

k mole/hr. The equilibrium relation is given by:

The equilibrium data is given as follows:

Q.4

(b)

to reduce the mole fraction of CS_2 exit gas stream to 0.005.

(a) Discuss different co-ordinate systems used in liquid extraction.

(b) Discuss criteria for selection of solvent for liquid-liquid extraction.

If 1000 kg/h of a nicotine (C)-water(A) solution containing 1 %

Nicotine is to be counter currently extracted with kerosene at 20 °C To reduce the nicotine content to 0.1% .Determine the minimum kerosene

X'=kg	0	0.001011	0.00246	0.00502	0.00751	0.00998	0.0204
nicotine/kg							
water							
Y'*=kg	0	0.000807	0.001961	0.00456	0.00686	0.00913	0.01870
nicotine/kg							
kerosene							

		OR	
Q.4	(a)	Discuss continuous counter current decantation with neat sketch.	07
	(b)	Derive equation for material balance for multistage counter current leaching.	07
Q.5	(a)	Discuss agitated batch crystallizer with neat sketch.	07
	(b)	With neat sketch discuss Venturi scrubber for gas-liquid contact operation. OR	07
Q.5	(a)	A counter-current plate absorber is to be installed for scrubbing of an air mixture containing 5 % ammonia by volume. The scrubber is fed with water containing 0.002 mole ammonia per mole of water. The scrubbing water flows at the rate of 1 mole water per mole of air. It is required to absorb 85% of ammonia present in the gas operating absorber at 20 ° C. The equilibrium relation is given as $y = 0.80 \text{ x}$. Calculate 1) concentration of ammonia in the outgoing liquid 2) number of stages necessary for this operation.	07
	(b)	Discuss types of packing and their selection criteria.	07
