Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V • EXAMINATION – SUMMER 2013

Subj	Subject Code: 151906 Date: 23-05-20		3
Subj	ect N	Name: Conventional Power Engineering	
Time	e: 10.	.30 am - 01.00 pm Total Marks: 70	0
Instru			
		Attempt all questions.	
		Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
	.	rightes to the right material limits.	
Q.1	(a)	With a neat sketch explain the general layout of modern thermal power plant with	07
	<i>a</i> >	different circuits.	
	(b)	Derive an expression for efficiency of Rankine cycle.	07
Q.2	(a)	State the reasons for compounding of steam turbine. Explain velocity	07
~. 2	(4)	compounding.	0,
	(b)	Prove that the condition for maximum efficiency for Parson turbine is	07
		$() 2\cos^2 \alpha$	
		(η) max = $\frac{2\cos^2\alpha}{1+\cos^2\alpha}$	
		OR	
	(b)		07
	(6)	of 20•. The blade velocity is 300 m/s and the blades are symmetrical. The mass-	07
		flow rate of steam is 0.5 kg/sec. Allowing a friction factor of 0.8, determine,	
		(i) blade efficiency	
		(ii) power developed(iii) stage efficiency if the nozzle efficiency is 95 %.	
		(iii) stage efficiency if the hozzle efficiency is 75 %.	
Q.3	(a)	State the advantages and disadvantages of closed cycle over open cycle gas	07
		turbine plant.	
	(b)	Draw a outline diagram of a diesel power plant. Explain any one system of diesel	07
		power plant. OR	
Q.3	(a)	State the various methods of improving efficiency and work output of a simple	07
C	()	gas turbine plant and discuss any one of them.	
	(b)		07
		610•C. The isentropic efficiency of the turbine and compressor are 0.82 and 0.8 respectively. Calculate the power output in KW when the air enters the	
		compressor at 15 °C at a rate of 16 kg/s. Take C _p = 1.005 KJ/kg K and = 1.4 for	
		compression process and $C_p=1.11$ KJ/kg K and $^{\circ}=1.333$ for expansion process.	
Q.4	(a)	With a neat sketch explain working of Pelton wheel.	07
	(b)	Draw a neat sketch of a nuclear reactor stating functions of each component. OR	07
Q.4	(a)	Write a note on boiling water reactor.	07
Q.4 Q.4	(b)	Write a note on nuclear waste and its disposal.	07
. .	(~)	•	
Q.5	(a)	Explain the phenomenon of cavitation in hydraulic turbine.	07
	(b)	Explain the following terms	07
		(i) Plant capacity factor (ii) Diversity factor	
		(iii) Load duration curves (iv) Demand factor OR	
Q.5	(a)	Write a note on fast breeder reactor.	07
	(-7		-

- (b) A power station is to supply three industrial loads, whose peak loads are 60 MW, 40 MW and 25 MW. The annual load factor is 0.6 and diversity factor is 1.8. Estimate the following:
 - (i) Maximum demand on the plant
 - (ii) Installed capacity
 - (iii) Annual energy generated
