Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- 1st / 2nd • EXAMINATION – SUMMER • 2014

	•	Code: 110010 Date: 26-06-2014	
Ti	me: 0 tructio 1. 2.	Name: Mechanics of Solids 2:30 pm - 05:30 pm Total Marks: 70 ons: Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
with the an 1) Three concur 2) A M. [malled 3) Which [E=2G 4) Point of change 5) The sh free en 6) All join 7) On oil		 Fill in the blanks with the most appropriate answer. Write complete sentence with the answer. 1) Three coplanar non-parallel forces in equilibrium willbe concurrent. [always, never, sometimes] 2) A M.S. bar under tension test shows the property of [malleability, ductility, tension ability] 3) Which one of the expression is not true [E=2G(1+μ), E=3K(1-2μ),E=9KG/(3G+K),M=I/Y] 4) Point of contraflexture is where [shear force is zero, shear force changes sign, B.M.is zero, B.M. changes sign] 5) The shape of shear force diagram for cantilever beam subjected to couple at free end is [horizontal straight line, zero, parabola, hexagonal] 6) All joints in a truss are joints. [pin, fixed, rigid] 7) On oiling the lifting machine is NOT affected. [velocity ratio, mechanical advantage, efficiency, law of machine] 	07
	(b)	Define Hardness, Toughness, Equilibrant, Poisson's ratio, Perfect truss, Bulk modulus of elasticity and Particle.	07
Q.2	(a)	Determine the resultant of the forces acting on the board as shown in figure 1.	06
	(b)	The extremities A & D of a light inextensible string ABCD are tied to two points in the same horizontal line. Weight W &3W are tied to the string at the points B &C resp. of AB&CD are inclined to the vertical at angles 60° & 30° resp.Show that BC is horizontal & find the tensions in the various parts of the string as shown in figure 2.	08
Q.3		A beam is loaded as shown in figure 3	
	1)	Determine the reactions at supports	07
	2)	Draw S.F diagram for the beam	03
	3)	Draw B.M diagram for the beam & determine the magnitude of maximum B.M.	04
Q.4	1)	A section of beam as shown in figure 4 is subjected to a B.M of 10 KN m about the major axis & A S.F of 20KN. Determine the M.I. of the section about both the centroid axis.	07
	2)	Draw bending stress distribution across the section.	07
	3)	Draw shear stress distribution across the section	03

- **Q.5** A truss is loaded as shown in figure 5. Determine
 - 1) The support reactions

06

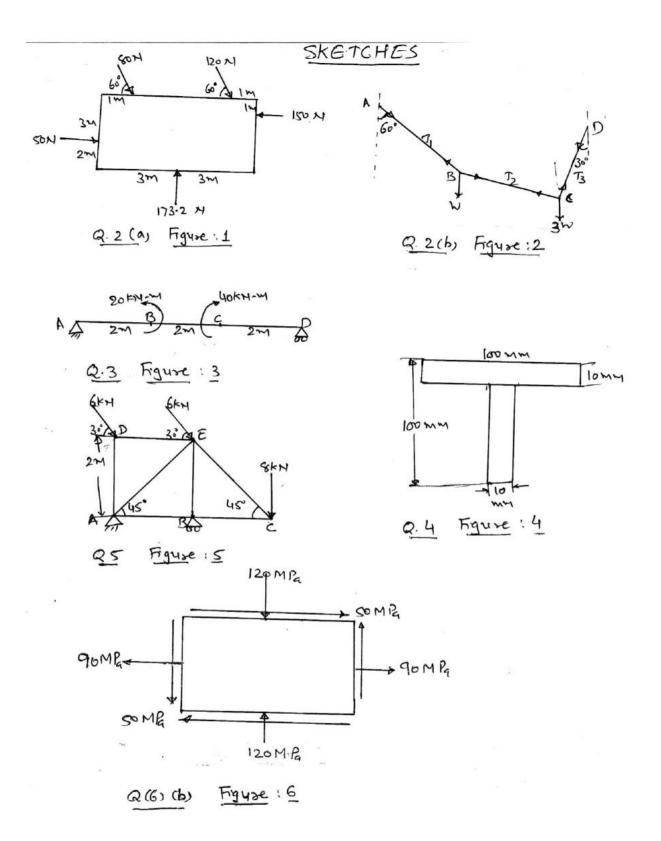
2) Internal forces in the members.

08

Q.6 (a) A 5m long ladder & 250N weight is placed against a vertical wall in a position where it's inclination to the vertical is 30°. A man weighing 800N climbs the ladder. At what position will he induce slipping? The coefficient of friction between floor & ladder is 0.2 & that between vertical wall & ladder is also 0.2.

07

(b) For an element as shown in figure 6. Find 1) Principal stresses & location of corresponding principal planes 2) Maximum shear stress & location of planes containing it.


07

Q.7 (a) The V.R of the lifting machine is 50. By this machine to lift a load of 4000N an effort of 100N is required .Find (a) MA, (b)ή of M/C, (c) is the M/C reversible or self locking and (d) if reversible, what maximum effort should be applied to prevent reversal of motion.

07

(b) A rectangular block of material is 250 mm long, 100mm wide and 80mm thick. If it is subjected to a tensile load of 200kN, compressive load of 300kN and tensile load of 250kN along its length, width and thickness respectively. Find the change in volume of the block. Take E= 210GPa and Poisson's ratio µ=0.25.

07
