		GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III • EXAMINATION – SUMMER • 2014	
Su	bject	Code: 130504 Date: 28-05-2014 Name: Process Calculation Date: 28-05-2014 Total Marks: 70	
	tructio 1. 2.	Ons: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	07
Ų.1	(b)	each system of units. Explain Ideal gas law, Dalton's law and Raoult's law.	07
Q.2	(a)	A continuous distillation column is used to regenerate solvent for use in a solvent extraction unit. The column treats 200 kmol/hr or a feed containing 10 mol % ethyl alcohol and the rest water. The overhead product is 89 mol % alcohol and the bottom product is 0.3 mol % alcohol. The overhead is sent to the extraction unit and bottom is waster. What is the daily requirement of make- up alcohol in the solvent extraction unit?	07
	(b)	Explain the material balance of extractor. OR	07
	(b)	Explain the material balance of crystallizer.	07
Q.3	(a)	Write the general material balance equation and explain the concept of limiting and excess reactant.	07
	(b)	Calculate the molar quantity of all the product materials when 1 kg-atom of sulfur is burned with 20% excess air and will produce 95% SO_2 and remaining SO_3 . OR	07
Q.3	(a)	Calculate the enthalpy of the tank filled with liquid having following data: Pressure inside the tank=7000 kPa, volume of liquid=7.0685 m ³ Volume of tank = 14.137 m ³ , Internal energy of liquid=5.3 * 10 ⁹ J	07
	(b)	The molal heat capacity of CO is given by $C_P=26.586+7.582*10^{-3}~T-1.12*10^{-6}~T^2$ where C_P is in kJ/kmol K and T is in K. Calculate the meanmolal heat capacity in the temperature range of 500-1000 K.	07
Q.4	(a)	Define: Sensible heat, Latent heat, Heat of reaction, Heat of solution, Adiabatic reaction.	07
	(b)	Wood containing 40% moisture is dried to 5% moisture. What mass of water in kilograms is evaporated per kg of dry wood? OR	07
Q.4	(a) (b)	Explain the concept of recycle, bypass and purge stream. Calculate the yield of $Na_2SO_4.10H_2O$ if a pure 32% solution is cooled to 20 °C without any loss due to evaporation. Take solubility of Na_2SO_4 in water at 20 °C is $19.4~kg/100~kg$ water.	07 07
Q.5	(a) (b)	Explain proximate analyses. Crude oil is found to contain 87.1% carbon, 12.5% hydrogen and 0.4% sulfur (by mass). Its GCV at 25 °C is measured to be 45071 kJ/kg oil. Calculate its NCV at 25 °C. Latent heat of water vapor=2442.5 kJ/kg	07 07

Enrolment No._____

Seat No.: _____

has taken place, calculate the % excess air.

(a) Explain ultimate analyses.

Q.5

OR

(b) The orsat analysis of the flue gases from a boiler house chimney gives $CO_2 = 11.4\%$, $O_2 = 4.2\%$ and $H_2 = 84.4\%$ (mole %). Assuming that complete combustion

07