
Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III • EXAMINATION – SUMMER • 2014

Subject Code: 131101 Subject Name: Basic Electronics			
Tir	•	02.30 pm - 05.00 pm Total Marks: 70	
	1. 2.	Attempt all questions.Make suitable assumptions wherever necessary.Figures to the right indicate full marks.	
Q.1	(a) (b)	Explain Hall effect phenomenon and list out its applications. Quantitatively discuss the use of Hall effect to determine mobility. Derive continuity equation for carrier concentration in body of a semiconductor.	07 07
Q.2	(a)	Discuss the process of splitting of energy levels of isolated atoms into energy bands as these atoms are brought into close proximity to form a crystal.	07
	(b)	Draw diode I-V characteristic, discuss its temperature dependence and obtain expression for diode dynamic resistance. OR	07
	(b)	Explain working of Tunnel diode. Draw its I-V characteristic and symbol. List out applications of Tunnel diode.	07
Q.3	(a)	For a sinusoidal input of 10 V peak, sketch I_R and V_O in the circuit shown in Fig. Q. 3 (a). Assume ideal diode with cut-in voltage equal to 0.7 V.	07
	(b)	Draw BJT circuit in common-base configuration as well as its input and output characteristics. Explain base-width modulation for the same. OR	07
Q.3	(a)	A symmetrical 5 KHz square wav that varies between + 10 V and -10 V is impressed upon the clipping circuit shown in Fig. Q: 3(a) OR. Assume for diode: R_f (forward bias resistance) = 0, R_r (reverse bias resistance) = 2 M Ω , Cut-in voltage = 0. Sketch the steady state output waveform, indicating value of maximum, minimum, and constant portion.	07
	(b)	In diode connected transistor circuit shown in Fig. Q: 3 (b) OR, the transistor has $\beta = 19$. If $V_E = 4$ V, determine the value of R_B . Neglect base-to-emitter junction voltage in the calculations.	07
Q.4	(a)	Derive expression for A_I , A_V , Z_i , and Y_O for a basic amplifier circuit in terms of h-parameters.	07
	(b)	What do you understand bias compensation? Draw and explain diode compensation circuit for V_{BE} .	07
Q.4	(a)	Derive expression for A _I , A _V , Z _i , and Y _O for a common-collector amplifier circuit using simplified hybrid model.	07
	(b)	Explain thermal runaway. Show graphically that thermal runaway cannot take place if the quiescent point is located at $V_{CE} < (1/2) \ V_{CC}$.	07
Q.5	(a) (b)	Draw two-dimensional structure of n-channel MOSFET. Explain its working. Explain push-pull arrangement of transistors and discuss its advantages. OR	07 07
Q.5	(a) (b)	Explain the use of FET as a voltage variable resistor. Draw transformer-coupled audio amplifier circuit. Show that the maximum value of conversion efficiency for this circuit is 50 %.	07 07

