Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (OLD) - EXAMINATION - SUMMER 2017 Date: 27/04/2017

Subject Code: 150104 Subject Name: Computational Fluid Dynamics-1 Time: 02:30 PM to 05:00 PM Instructions: Date: 27/04/ Total Mark			
			IIIs
Q.1	(a) (b)	•	07 07
Q.2	(a) (b)	Midpoint Leapfrog method	07 07
		respect to y is given as $u=1582(1-e^{\frac{t}{L}})$, where L= 1 unit and $\mu=3.37\times10$ -7slug/ (ft.s). y is from 0 to 0.3 in the steps of 0.1. Find the percentage error in shear stress, involved in 1st ordered and 2nd ordered difference compared to exact solution.	
	(b)	OR Write a note on grid generation.	07
Q.3	(a) (b)		07 07
Q.3	(a) (b)	Explain the substantial derivative in brief.	07 07
Q.4	(a)	List out the fundamental physical principles of fluid flow. With a neat sketch explain the models of fluid flow and derive the continuity equation for the model of an infinitesimally small element fixed in space	07
	(b)	•	07
Q.4	(a) (b)	Explain in brief the model of the finite control volume moving with the fluid	07 07
Q.5	(a) (b)	Explain cfd as a research tool.	07 07
Q.5	(a) (b)	Explain the momentum equation.	07 07
