Seat No.:	Enrolment No.
50at 1 10	Lin official 1 to.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III • EXAMINATION - WINTER • 2014

Subject Code: 2133607 Subject Name: Physical Chemistry Time: 02.30 pm - 05.00 pm Total Ma				
Q.1	(a)	a. Molar heat capacity at constant volume (Cv)b. Molar heat capacity at constant pressure (Cp)	07	
	(b)	following system; a. Water ↔ Water – vapour	04	
		 b. KCl + Water ↔ KCl – Hydrate (ii) How many phases are present in each of following system; a. A drop of water placed in a stoppered bottle b. A piece of molten ice placed in a beaker covered with a watch glass c. Mixture of N₂, H₂ & O₂ gases. 	03	
Q.2	(a)	What is reference electrode? Describe the construction and working model of Calomel electrode.	07	
	(b)		03 04	
	(b)		07	
Q.3	(a)	Define two component systems. Discuss the salient features of the face diagram of silver-lead system.	07	
	(b)	·	05	
		Show that it is a first order reaction. (ii) Prove that time taken to change the concentration of a reactant to half of its initial value is independent of the initial concentration of the reactant for first order reaction.	02	
Q.3	(a) (b)		07 02 05	
Q.4	(a)	(i) Define heat of combustion and heat of formation. (ii) The heat of combustion of ethyl alcohol is -330Kcal. If the heat of formation of CO ₂ (g) & H ₂ O(l) be -94.3 Kcal & -68.5 Kcal respectively. Calculate the heat of formation of ethyl alcohol.	02 05	

	(b)	(i) Define:	03
		a. Critical temperature	
		b. Absolute Zero	
		c. Specific heat.	
		(ii) Explain Faraday's method for liquefaction of gases.	04
		OR	-
Q.4	(a)	(i) Define enthalpy of a system. Calculate the change in enthalpy by showing that enthalpy is a function of state.	04
		(ii) For the reaction:	03
		$H_2(g) + 0.5O_2(g) \rightarrow H_2O(l),$	
		The value of enthalpy change & free energy changes are -68.32 & -56.69 Kcal respectively. Calculate the value of free energy change at	
		25°C.	
	(b)	How and why real gases deviate from ideal behavior. Derive Vander Waal's equation for 'n' moles.	07
Q.5	(a)	Derive Young-Laplace & Kelvin equation for droplets.	07
Ų.S	(b)	What is catalysis? Discuss intermediate compound formation theory and adsorption theory.	07
		OR	
Q.5	(a)	Define surface tension. Describe drop formation method of determining surface tension of a liquid in details.	07
	(b)	Give characteristic of enzyme catalysis. Discuss Michaelis & Menten's enzyme mechanism in detail to express the rate of reaction. Derived the required equation.	07
