
GUJARAT TECHNOLOGICAL UNIVERSITY

B. E. - SEMESTER – III • EXAMINATION – WINTER 2012

U			10-01-2013	
Time	e: 10.30	•	Total Marks: 70	
Instr	2. Ma	18: tempt all questions. ake suitable assumptions wherever necessary. gures to the right indicate full marks.		
Q.1	(a)	State and prove Thevenins Theorem, find Rth and Vth. for the network shown in Fig.1	07	
	(b)	Find ABCD parameters for the two port network shown in Fig.2. Also derive Y parameters from ABCD parameters	07	
Q.2	(a)	Explain the terms (i) NonLinear (ii) Uniilateral (iii) Passive (iv) Reciprocal (v) Time variant (vi) Lumped parameter and (vii) principal of Duality.	07	
	(b)	Write down voltage and current relationships in resistor, inductor and capacitor .Also mention the initial and final condition for R,L and C components in the different cases.	07	
		OR		
	(b)	Explain the "Dot Convention Rule" for the magnetically coupled Network using network shown in Fig-3.Also formulate KVL equations.	07	
Q.3	(a)	Explain the formulation of graph, tree and Incidence Matrix using suitable example. Hence discuss the procedure of forming reduced Incidence Matrix and its advantages.	07	
	(b)	For the Network shown in fig-4, Draw the oriented Graph and all possible trees. Also prepare (1)The Incidence Matrix. (2) Fundamental Tie set Matrix. (3)Fundamental cut set Matrix.	07	
		OR		
Q.3	(a)	Explain various source transformation techniques. Using Source transformation techniques find current "i" in the network shown in fig-5	10	

	(b)	Explain following in Brief: Ideal and Practical Energy source	04
Q.4	(a)	Explain The Laplace Transformation method. Find Laplace Transform of Unit Step, and exponential function.	07
	(b)	In the Network shown in fig-6 ,the switch k is closed at t=0 ,connecting voltage Vo sinwt to the parallel RL-RC circuit. Find (1) di1/dt and (2) d i2/dt at t=0+	07
		OR	
Q.4	(a)	State and explain various Network Functions. For the resistive two port network of fig-7, determine the numerical values for $G12(s)$, $Z12(s)$ and $\alpha12(s)$.	07
Q.5	(a) (b)	State and explain the Initial and final value theorem. Find the particular solution for the current using laplace transformation in the n/w shown in fig-8. The switch k is closed at t=0. Assume zero initial conditions in the elements.	07 07
		OR	
Q.5	(a)	State and explain Superposition Theorem. Hence using this find Vab in fig-9.	07
	(b)	Find the current through the 2V source in fig-10 using Node voltage analysis.	07
