Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE SEM-III Examination-Dec.-2011

Subj	ect c	code: 133401 Date: 13/12/20	11
•	e: 2.3	Name: Thermodynamics and Thermal Engineering 30 pm -5.00 pm Total marks: 7	0
instru	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	(i) Explain "Zeroth Law of Thermodynamics"(ii) Explain Clausius and Kelvin-Plank Statement	03 04
	(b)	Define First Law of Thermodynamics. Derive the Steady flow Energy equation (SFEE).	07
Q.2	(a) (b)	Derive the expressions of efficiency in Otto Cycle. Define Entropy. Explain Clausius inequality. OR	07 07
	(b)		07
Q.3	(a)	Describe different operations of Rankine Cycle. Derive also the expression for its efficiency.	07
	(b)	Define the term "Steam Nozzle". Explain various types of nozzles.	07
Q.3	(a)	OR Explain working principle of Turbojet. Write the advantages of Turbojet.	
	(b)		07
		(ii) How to classify Rockets?	03
Q.4	(a)	Define the following terms:- (i) Saturated air (ii) Dry-Bulb Temperature (iii) Dew point Temperature	03 02 02
	(b)	Write the comparison between vapour compression system and vapour absorption system OR	07

(a) A Carnot refrigerator requires 1.3 Kw per tonne of refrigeration to 0.4 maintain a region at low temperature of -38 ° C. Determine: (i) C.O.P of Carnot refrigerator (ii) Higher temperature of the cycle (iii) The heat delivered and C.O.P. when this device is used as heat 07 pump. (b) How are air-conditioning systems classified? Explain with neat diagram the working of Central System of air-conditioning. **07** (a) An exterior wall of a house may be approximated by a 0.1 m layer of 07 **Q.5** common brick ($k = 0.7 \text{ W} / \text{m}^{\circ}\text{C}$) followed by a 0.04 m layer of gypsum plaster ($k = 0.48 \text{ W} / \text{m}^{\circ}\text{C}$). What thickness of loosely packed rock wool insulation $(k = 0.065 \text{ W} / \text{m}^{\circ}\text{C})$ should be added to reduce the heat loss or (gain) through the wall by 80 percent? **(b)** Define the following: (i) Radiation 02 (ii) Emissivity 02 (iii) Black Body 03 OR A thick walled tube stainless steel with 20 mm inner diameter and 40 mm **Q.5** outer diameter is covered with a 30 mm layer of asbestos insulation (k = 0.2 W / m°C). If the inside wall temperature of the pipe is maintained at 600°C and the outside insulation at 1000°C, calculate the heat loss per metre of length. **07 (b)** Briefly explain the following (i) Parallel-flow heat exchangers. **07** (ii) Counter-flow heat exchangers.
