Seat No.:	Enrolment No.
-----------	---------------

GUJARAT TECHNOLOGICAL UNIVERSITY

B. E. - SEMESTER – IV • EXAMINATION – WINTER 2012

Total Marks: 70

Subject code: 141301 Date: 27/12/2012 Subject Name: Design of Environment structure

Time: 02.30 pm - 05.00 pm Instructions:

- 1. Use of IS-456, IS-800, IS-875: Part-I, II, III, SP-6 & SP-16 is permitted.
- 2. For analysis and design purpose, take concrete grade: M_{20} , steel grade: Fe_{415} in RCC design and yield stress of steel: $f_y = 250$ MPa in steel design if not given in the data.
- 3. Take shear stress in fillet weld as 108 MPa, wherever necessary.
- 4. Figures to the right indicate full marks to the question.
- 5. Assume suitable data, if necessary and mention the assumed data clearly in your answers.
- Q.1 (a) Design a simply supported singly reinforced beam subjected by a factored moment of 07 200 kNm. Width of the beam is 300 mm. Use M20 and Fe415 grades.
 - (b) Find the effective length of the beam of rectangular section 230mm wide and 550 07 mm deep reinforced by 4 bars of 20mm at an effective depth of 500mm. The beam is subjected by a udl of 50 kN/m on entire span.
- Q.2 (a) Design a double equal angle tie member connected on either side of gusset plate 6 mm 07 thick coonected by 20 mmΦ pds rivets. Members are also connected by tacking rivets. The axial load acting on the member is 320 kN.
 - (b) Design riveted connection for the member subjected by the axial force of 250 kN. 07 Member comprising of 2 ISA 100x100x8 mm connected on both side of gusset plate. Use 16 mmΦ pds rivets.

OR

- (b) Design welded connection for the above example Q.2 (b) 07
- Q.3 (a) Design an ISHB section for a column taking compressive force of 900 kN. The 07 unsupported length of column is 5.5 m with both end fixed.
 - (b) Design a slab base foundation for the column section ISHB300 @ 58.8 kg/m 07 subjected by axial force of 1000 kN. Use permissible bearing stress in concrete as 5 N/mm² and Safe bearing capacity of soil as 180 kN/m².

OR

- Q.3 (a) Design a simply supported beam (steel) section subjected by a udl of 60 kN/m on 07 entire span of 6 m. Also check the beam for shear and deflection.
 - (b) Draw a neat sketch of beam to beam stiffened seated connection. 07
- Q.4 (a) Design shear reinforcement for an RCC beam, having cross section 250 mm wide x 07 500 mm effective depth, subjected to factored shear force of 250kN. The beam is reinforced with 1% tension steel. Use bent up bar along with 2 legged 6mm dia vertical stirrups.
 - (b) Design a one way slab for the simply supported span of 3.0 m resting on 230 mm 07 wide beam. Use M20 and Fe415 grade. Slab is used for commercial purpose.

OR

- Q.4 (a) A RCC column of c/s 300 mm x 450 mm having 4-25 mm dia as longitudinal 07 reinforcement and having 2 legged 6 mm dia lateral ties at a pitch of 250 mm c/c. Check that reinforcement provided is confirms the IS or not. If not give your suggestion.
 - (b) Calculate reinforcement for doubly reinforced beam section of 250 x 500 mm 07 effective subjected by a moment of 340 kNm. Use M20 and Fe415 grades.

- Q.5 (a) Design the reinforcements in a circular column of diameter 450mm with lateral ties to 07 support axial load of 900 kN. The column has an unsupported length of 3.4m. Adopt M25 and Fe-415.
 - (b) A reinforced concrete column 400mm x 400 mm is loaded with 1100 kN 07 characteristic load .The Bearing pressure on soil is $160 \text{ kN} / \text{m}^2$ at 1.5 m depth . Determine the dimensions of the square footing and Sketch them.

OR

Q.5 (a) Design a built-up column carrying an axial load of 1300 kN. Its length is 7.2 m and it is effectively held in position at both ends and restrained against rotation at one end. Assume a yield stress of 250 MPa. Also design single Lacing system or Battening system for this column.
