Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER V • EXAMINATION - WINTER - 2012

		DE - SEMIESTER V • EXAMINATION - WINTER • 2012	
Subjec	ct cod	e: 150401 Date: 11-01-2013	
Subjec	et Nar	ne: Advanced Molecular Biology - I	
_		pm to 05:00 pm Total Marks: 70	
Instru		1	
		tempt all questions.	
		the suitable assumptions wherever necessary.	
•	o. Fig	ures to the right indicate full marks.	
Q.1	(a)	Enlist various vectors used in genetic engineering. Explain engineered	10
۷.1	(u)	vectors in detail	10
	(b)	Explain the principle of isoelectric focusing.	04
	(6)	Explain the principle of isociectic focusing.	UŦ
0.3	()		0.5
Q.2	(a)	Explain regulation of gene expression in eukaryotes at the level of	07
	(1)	transcription.	
	(b)	Explain lac operon in detail	07
	<i>(</i> 1)	OR	0.5
	(b)	Explain trp operon in detail	07
0.2	(-)		07
Q.3	(a)	Explain different mechanisms of suppression of mutation	07
	(b)	Explain mismatch repair with a neat diagram	07
0.3	()	OR	0.5
Q.3	(a)	Describe the technique of southern blotting in detail.	07
	(b)	Explain nucleotide excision repair in detail.	07
0.4	(-)	Wilest and the beside to all most in a matic and in a matic	07
Q.4	(a)	What are the basic tools used in genetic engineering.	07
	(b)	Which different methods are used for modifying ends of DNA fragments OR	07
0.4	(-)	021	07
Q.4	(a)	What are the different compatibilities for insertion of DNA insert into the	07
	(1.)	vector?	07
	(b)	How can recombinant DNA be introduced into a suitable host?	07
Q.5	(a)	Write a short note on restriction endonuclease.	07
Q.5	(a)	Explain the principle and working mechanism of PCR	07
	(b)	OR	U/
0.5	(a)		07
Q.5	(a)	Write a short note on colony hybridization What is genetic engineering? Enlict various emplications of genetic	
	(b)	What is genetic engineering? Enlist various applications of genetic engineering.	07
		engineering.	
