Seat No.:	Enrolment No.
Deat 110	Lindinent 140.

Subject code: 150605

Subject Name: Structural Analysis-III

GUJARAT TECHNOLOGICAL UNIVERSITY

BE – SEMESTER V • EXAMINATION – WINTER - 2012 150605 Date: 22-01-2013

Time: 02:30 pm to 05:00 pm **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. **Q.1** (a) (i) Differentiate between flexibility method and stiffness method of 04 analysis. (ii) Write assumptions made in plastic analysis. 03 (b) Derive an expression for stresses in spherical dome subjected to 07 concentrated load at crown. **Q.2** (a) A beam semicircular in plan with both the ends fixed has radius of 5 m. It 07 is loaded with a concentrated load of 40kN at the mid-point of the semicircle. Draw the twisting moment, bending moment and shear force diagrams. Take GJ = 0.8EI. (b) A beam circular in plan has radius of 5 m and is supported on 6 columns 07 spaced equally along the circumference. It is loaded by a U.D.L. of 20 kN/m. Calculate twisting moment and bending moment at support and mid-span. OR (b) Formulate the flexibility matrix [F] and $\{D_{OL}\}$ for the structure shown in 07 the **Figure 1**. 0.3 (a) Formulate the stiffness matrix [S] and load vector $\{A_D - A_{DL}\}\$ for **07** the structure shown in the **Figure 1**. (b) Calculate the joint displacements using stiffness method for the above 07 problem Q.3 (a) and draw the shear force diagram and bending moment diagram. OR Q.3(a) Analyze the plane truss shown in **Figure 2** by flexibility matrix method. **07** Take EA = constant for all members. (b) A beam quarter circular in plan with both the end fixed has radius of 5 m. 07 The beam is carries a U.D.L. of 30 kN/m. Draw the twisting moment, bending moment and shear force diagrams. Take GJ = 0.8EI. 0.4 (a) A spherical dome of 100 mm thickness, base diameter of 14 m and central 07 rise of 3.5 m supports total uniformly distributed load of 4.0 kN/m² over the surface inclusive of self weight. Determine the meridional and hoop stress at ring beam level. (b) A conical dome of 100 mm thickness and 3.5 m rise is to be used to cover 07 a hall of 20 m diameter. The live load of 2.0 kN/m² is acting over the dome surface. Calculate meridional stress and hoop stress at the base of dome. Density of the concrete is 25 kN/m³. OR (a) A spherical dome of 100 mm thickness, base diameter of 14 m and central 07 **Q.4**

rise of 3.5 m is subjected to a lantern load of 5 kN at the crown. Determine the meridional and hoop stress at ring beam level. Assume density of the concrete is 25 kN/m^3 .

- Q.4 (b) A fixed beam of 5 m span carries a U.D.L. of 100 kN/m over 3 m length from left side support. Determine the plastic moment for the beam and plastic section modulus required. Take $f_v = 250$ MPa.
- Q.5 (a) Determine the shape factor and plastic moment capacity of the I section, 07 shown in Figure 3. Take $f_v = 250$ MPa.
 - (b) Calculate the collapse load in terms of M_p for the fixed beam shown in **07** Figure 4.

OR

Q.5 (a) Determine the collapse load for the continuous beam loaded as shown in 07 Figure 5.

(b) A beam semicircular in plan with both the ends fixed has radius of 5 m. It is loaded with a U.D.L. of 20kN/m. Draw the twisting moment, bending moment and shear force diagrams. Take GJ = 0.8EI.

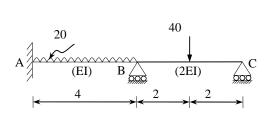


Figure 1 [OR Q-2(b), Q-3(a)]

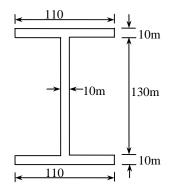
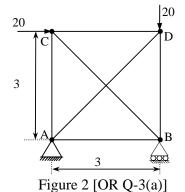



Figure 3 [Q-5(a)]

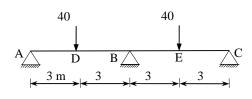


Figure 5 [OR Q-5(a)]