Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- 1st / 2nd • EXAMINATION - WINTER 2013

	U	Code: 110005 Date: 24-12-2013 Name: Elements of Electrical Engineering	
Tir	ne: 1	0:30 am – 01:00 pm Total Marks: 70 ons:	
	2.	Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Give comparison of series and parallel circuit. Why are domestic appliances connected in parallel?	07
	(b)	What is the temperature co-efficient of resistance? Prove $Rt_2 = Rt_1 [1 + \alpha_1 (t_2-t_1)]$, where notations have usual meanings.	07
Q.2	(a)	Explain charging and discharging of a capacitor C, through a resistor R, with neat sketch and derive the equation $V_c = V(1 - e^{-t/RC})$. Assume that the R-C	07
	(b)	series circuit is connected across a d.c supply of voltage V. Find the current supplied by the battery using Kirchhoff's law in Fig.1.	07
		6Ω 4Ω 4Ω 4Ω 3Ω 6Ω 4Ω 4Ω	
	(b)	OR Explain the method of transforming a star network of resistances into delta Network.	07
Q.3	(a) (b)	Explain the method of measuring $3-\Phi$ power by two watt meters State similarities and dissimilarities between electric circuit and magnetic circuit.	07 07
Q.3	(a)	OR Explain hysteresis loss and eddy current loss. Also state the remedies to reduce	07
Q.J	(a)	these losses.	U1
	(b)	Obtain the relation $L = (L_1L_2 - M^2) / (L_1 + L_2 + 2M)$ for equivalent inductance when two inductors are connected in parallel such that the mutually induced emf opposes the self induced emf.	07
Q.4	(a)	Define following terms with respect to a.c. waveform (i) Frequency (ii) Power factor (iii) R.M.S. value (iv) Amplitude	07
	(b)	(v) Average value (vi) Instantaneous value. (vii) Time period Four currents are meeting at a point in a circuit. Find the resultant current. $i_1 = 5 \sin \omega t$, $i_2 = 10 \sin (\omega t - 30^\circ)$, $i_3 = 5 \cos (\omega t - \omega t - 30^\circ)$, $i_4 = -10 \sin (\omega t + 45^\circ)$	07
Q.5	(a)	Prove that current in purely inductive circuit lags its voltage by 90°	07
	(b)	and average power consumption in pure inductor is zero. The voltage and current in a circuit are given by $V = 150 \angle 30^{\circ}$ volt and	07

		I = 2/-15° Ampere. If circuit works on a 50 Hz supply, determine, (i) Impedance, (ii) Resistance, (iii) Reactance, (iv) Power factor, (v) Power loss		
Q.6	(a) (b)	Explain with neat sketch construction and working of lead acid battery Derive an expression for the total power for a balanced 3 phase star connected load in terms of line voltage, line current and power factor.	07 07	
Q.7	(a) (b)	Classify and explain various types of lighting schemes. Explain the working of earth leakage circuit breaker with diagram.	07 07	
