Seat No.:	

03

02

02

03

02

02

1

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- 1st / 2nd • EXAMINATION - WINTER 2013 Subject Code: 110014 Date: 23-12-2013 **Subject Name: Calculus** Time: 10:30 am - 01:30 pm**Total Marks: 70 Instructions:** Attempt any five questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. **Q.1** (a) Attempt the following questions. (1) Expand $\sin(\frac{\pi}{4} + \theta)$ in power of θ . Hence find the value of Sin 46°. (2) Evaluate $\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$. (3) Check the convergence of $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$. **(b)** Attempt the following questions. (1) Using reduction formula, evaluate $\int_{0}^{x} (x \sin^{5} x \cos^{4} x) dx$. (2) Find $\frac{dy}{dx}$ if $y = \int_{1}^{x} \sin t dt$. (3) Test the convergence of $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3/2}}$.

Q.2 (a) Attempt following questions.

(1) If
$$x^x y^y z^z = a$$
 Show that at $x = y = z$, $\frac{\partial^2 z}{\partial x \partial y} = -(x \log ex)^{-1}$.

- (2) Evaluate $\iint_{S} \sqrt{xy y^2} dxdy$ Where S is a triangle with vertices (0, 0) (10, 1) (1, 1).
- (b) Attempt following questions.
 - (1) Using appropriate reduction formula to evaluate following. **04**

(i)
$$\int_{0}^{2a} x^{\frac{7}{2}} (2a - x)^{-\frac{1}{2}} dx$$

$$(ii) \int_{0}^{\pi} (1-\cos x)^2 dx$$

(2) Expand $\log(1+e^x)$ in ascending power of x as far as term containing x^4 .

(b) Attempt following questions.

- (1) Find the points of inflection on the curve $y = (\log x)^3$.
- (2) Test for convergence the series whose nth term is $\left(1 + \frac{1}{\sqrt{n}}\right)^{n^{(-\frac{3}{2})}}$

- Q.3 (a) Attempt following questions.
 - (1) If $u = \sin^{-1} \left(\frac{x^{\frac{1}{4}} + y^{\frac{1}{4}}}{x^{\frac{1}{6}} + y^{\frac{1}{6}}} \right)$ then prove that

 $x^{2}u_{xx} + 2xyu_{xy} + y^{2}u_{yy} = \frac{1}{144}\tan u(\tan^{2}u - 11)$

(2) If u = f(r) where $x = r\cos\theta$, $y = r\sin\theta$ Prove that

 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$

- **(b)** Attempt following questions.
 - (1) Find the shortest and longest distance from the point (1,2,-1) to the sphere $x^2 + y^2 + z^2 = 24$
 - (2) Expand e^{xy} at (1, 1) up to three terms, by taylor's theorem.
- Q.3 (a) Attempt following questions.
 - (1) If $u = \log(x^3 + y^3 + z^3 3xyz)$ Show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$
 - (2)If f(x, y) = 0, $\phi(y, z) = 0$ prove that $\frac{\partial f}{\partial y} \frac{\partial \phi}{\partial z} \cdot \frac{dz}{dx} = \frac{\partial f}{\partial x} \frac{\partial \phi}{\partial y}$ 03
 - **(b)** Attempt following questions.
 - (1) Examine the function $x^3 + y^3 3axy$ for maxima and minima. **04**
 - (2) Find the equation of the tangent plane and normal line to the surface $\frac{x^2}{2} \frac{y^2}{3} = z$ at the point (2, 3, -1).
- Q.4 (a) Attempt following questions.
 - (1) Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2+y^2}} dydx$ by changing the order of integration.
 - (2) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{1}{\sqrt{1-x^2-y^2-z^2}} dz dy dx.$
 - (b) Attempt following questions.
 - (1) Evaluate $\iint_R (x+y)^2 dxdy$, where R is the parallelogram in the xy plane with vertices (1,0), (3,1), (2,2), (0,1) using the transformation u=x+y and v=x-2y.
 - (2) Find the total area enclosed by lemniscate $r^2 = a^2 \cos 2\theta$.
- Q.5 (a) Attempt following questions.
 - (1) Find the volume bounded by the xy plane, the paraboloid $2z = x^2 + y^2$ and the cylinder $x^2 + y^2 = 4$.
 - (2) Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{dxdy}{\sqrt{(1-x^2)(1-y^2)}}.$
 - (b) Attempt following questions.
 - (1) Show that the volume of spindle-shaped solid generated by the astroid **04**

$$x^{2/3} + y^{2/3} = a^{2/3}$$
 about the x-axis is $\frac{32\pi a^3}{105}$.

- (2) Change into polar co-ordinate and evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 x^2}} e^{-(x^2 + y^2)} dy dx$.
- Q.6 (a) Attempt following questions.

(1) Trace the curve
$$y^2(2a-x) = x^3$$
.

(2) Discuss the convergence of integral
$$\int_{-2}^{2} \frac{dx}{x^2}$$
.

(b) Attempt following questions.

(1) Discuss the continuity of
$$f(x, y) = \frac{x}{\sqrt{x^2 + y^2}}, x \neq 0, y \neq 0$$
 and
$$= 2, \qquad x = 0, y = 0$$

at the origin.

(2) Evaluate
$$\lim_{x \to 0} \left(\frac{a^x + b^x + c^x}{3} \right)^{1/x}.$$

Q.7 (a) Attempt following questions.

(1) Test the convergence
$$\sum_{n=1}^{\infty} ne^{-n^2}$$
 04

(2) Find
$$F'(0)$$
 for $F(x) = \int_{3}^{\sin t} \frac{1}{1+t^2} dt$ by Leibnitz's rule for integral.

(b) Attempt following questions.

(1) Evaluate
$$\lim_{x\to 0} \left(\frac{1}{x}\right)^{1-\cos x}$$
.

(2) Find the linearization of
$$f(x, y) = x^2 - xy + \frac{1}{2}y^2 + 3$$
 at point (3,2)
