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Seat No.: ________                                                           Enrolment No.___________ 

GUJARAT TECHNOLOGICAL UNIVERSITY 
BE - SEMESTER– 1st / 2nd  • EXAMINATION – WINTER 2013 

Subject Code: 110014 Date: 23-12-2013        
Subject Name: Calculus 
Time: 10:30 am – 01:30 pm Total Marks: 70 
Instructions: 

1. Attempt any five questions.  
2. Make suitable assumptions wherever necessary. 
3. Figures to the right indicate full marks.  

 
Q.1 (a) Attempt the following questions.  
  (1) Expand )

4
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(3) Check the convergence of ∫
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 (b) Attempt the following questions.  
  

(1) Using reduction formula, evaluate ∫
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Q.2 (a) Attempt following questions.  
  

(1) If azyx zyx = Show that at 1
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  (2) Evaluate ∫∫ −
S

dxdyyxy 2 Where S is a triangle with vertices (0, 0) (10, 1) 

(1, 1). 
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 (b) Attempt following questions. 
 

 

  (1) Using appropriate reduction formula to evaluate following. 
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  (2) Expand )1log( xe+   in ascending power of x as far as term containing 4x . 03 
  OR  
 (b) Attempt following questions.  
  (1) Find the points of inflection on the curve 3)(log xy = . 04 
  

(2) Test for  convergence the series whose nth  term is 
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Q.3 (a) Attempt following questions.  
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  (2) If )(rfu = where θθ sin,cos ryrx ==  Prove that 
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 (b) Attempt following questions.  
  (1) Find the shortest and longest distance from the point (1,2,-1) to the sphere 

24222 =++ zyx    
04 

  (2) Expand xye at (1, 1) up to three terms, by taylor’s theorem.  03 
  OR  

Q.3 (a) Attempt following questions.  
  

(1) If  ( )xyzzyxu 3log 333 −++= Show that 
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 (b) Attempt following questions.  
  (1) Examine the function axyyx 333 −+ for maxima and minima. 04 
  (2) Find the equation of the tangent plane and normal line to the surface 
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 at the point (2, 3, -1). 
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Q.4 (a) Attempt following questions.  
  

(1) Evaluate ∫ ∫
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(2) Evaluate ∫ ∫ ∫
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 (b) Attempt following questions.  
  (1) Evaluate ( )∫∫ +

R

dxdyyx 2 , where R is the parallelogram in the xy plane with 

vertices (1,0), (3,1), (2,2), (0,1) using the transformation yxu +=   and 
     yxv 2−= .  

04 

  (2) Find the total area enclosed by lemniscate θ2cos22 ar = .  03 
    

Q.5 (a) Attempt following questions.  
  (1) Find the volume bounded by the xy plane, the paraboloid 222 yxz +=  and 

the cylinder   22 yx + = 4. 
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(2) Evaluate ∫ ∫ −−
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 (b) Attempt following questions.  
  (1) Show that the volume of spindle-shaped solid generated by the astroid 04 
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(2) Change into polar co-ordinate and evaluate ∫ ∫
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Q.6 (a) Attempt following questions.  
  (1) Trace the curve 32 )2( xxay =− . 04 
  

(2) Discuss the convergence of integral ∫
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 (b) Attempt following questions.  
  (1) Discuss the continuity of 0,0,),(
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(2) Evaluate
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Q.7 (a) Attempt following questions.  

  
(1) Test the convergence ∑
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 (b) Attempt following questions.  
  

(1)  Evaluate
x

x x

cos1

0

1lim
−

→
⎟
⎠
⎞

⎜
⎝
⎛ . 

 
04 

  (2) Find the linearization of 3
2
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