2

3

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- 1st / 2nd • EXAMINATION - WINTER 2013

Subject Code: 110015 Date: 17-12-2013

Subject Name: VECTOR CALCULUS AND LINEAR ALGEBRA

Time: 10:30 am – 01:30 pm Total Marks: 70

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) (i) Show that the differential form under the integral of 5 $I = \int_{(0,-1,1)}^{(2,4,0)} e^{x-y+z^2} (dx dy + 2zdz) \text{ is exact in space and evaluate the integral.}$
 - (ii) A parametric representation of the surface is given. Identify and sketch the surface:

 $\overline{r}(u,v) = a\cos u\,\hat{i} + a\sin u\,\hat{j} + v\,\hat{k}$, where u, v vary in the rectangle $R: 0 \le u \le 2\pi$, $-1 \le v \le 1$.

(b) For which values of 'a' will the following system have no solution? Exactly one solution? Infinitely many solutions?

$$x + 2y - 3z = 4$$

$$3x - y + 5z = 2$$

$$4x + y + (a^{2} - 14)z = a + 2.$$

(c) Let A be the matrix

$$\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$
, $p_1(x) = x^2 - 9$, $p_2(x) = x + 3$, and $p_3(x) = x - 3$, show that $p_1(A) = p_2(A) p_3(A)$.

- Q.2 (a) (i) Verify Gauss divergence theorem for $\overline{F} = 7x\hat{i} z\hat{k}$ over the sphere $x^2 + y^2 + z^2 = 4$.
 - (ii) Find the directional derivative of f(x, y, z) = xyz at the point p:(-1,1,3) in the direction of the vector $\overline{a} = \hat{i} 2\hat{j} + 2\hat{k}$.
 - (b) Find the inverse of a matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$ using Row operations.
 - (c) Determine whether the set of all polynomials $a_0 + a_1x + a_2x^2 + a_3x^3$ for which a_0, a_1, a_2 and a_3 are integers, is a subspace of P_3 .

- Q.3 (a) (i) Show that the set of all 2×2 matrices of the form $\begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix}$ with addition defined by $\begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} + \begin{bmatrix} c & 1 \\ 1 & d \end{bmatrix} = \begin{bmatrix} a+c & 1 \\ 1 & b+d \end{bmatrix}$ and scalar multiplication defined by $k \begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} = \begin{bmatrix} ka & 1 \\ 1 & kb \end{bmatrix}$ is a vector space.
 - (ii) Find the area of the papallelogram determined by the vectors $\underline{u} = (2,3,0), \ \overline{v} = (-1,2,-2).$
 - (b) Using Green's theorem, evaluate the line integral $\int_C (\sin y \, dx + \cos x \, dy)$ counter clockwise, where C is the boundary of the triangle with vertices (0,0), $(\pi,0)$, $(\pi,1)$.
 - (c) The velocity vector $\overline{v} = \overline{r}'(t) = x^3 \hat{k}$ of a fluid motion is given. Is the flow irrotational? Incompressible? Find the path of the particle.
- Q.4 (a) (i) Let $p_1 = 1 + x$, $p_2 = 1 + x^2$ and $p_3 = x + x^2$. Show that the set $S = \{p_1, p_2, p_3\}$ is a basis for P_2 . Find the coordinate vector of $p = 2 x + x^2$ with respect to S. (ii) Use appropriate identities, where required, to determine which of the following sets of vectors in $F(-\infty, \infty)$ are linearly dependent:
 - (1) x, $\cos x$ (2) $\cos 2x$, $\sin^2 x$, $\cos^2 x$.
 - (b) Find the rank and nullity of the matrix $A = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{bmatrix}$.
 - (c) Use Cramer's rule to solve the system $x_1 3x_2 + x_3 = 4$, $2x_1 x_2 = -2$, $4x_1 3x_3 = 0$.
- Q.5 (a) (i) Let W be the space of P^5 spanned by the vectors 5 $\overline{v}_1 = (1,4,5,6,9), \ \overline{v}_2 = (3,-2,1,4,-1), \ \overline{v}_3 = (-1,0,-1,-2,-1), \ \overline{v}_4 = (2,3,5,7,8).$ Find a basis for the orthogonal complement of W.
 - (ii) Sketch the unit circle in an xy-coordinate system in R² using the Euclidean inner product $\langle \overline{u}, \overline{v} \rangle = \frac{1}{4}u_1v_1 + \frac{1}{16}u_2v_2$.
 - (b) Find the least squares solution of the linear system AX=b given by 2x-2y=2, x+y=-1, 3x+y=1. Also find the orthogonal projection of **b** on the column space of A.
 - (c) Let R^2 have the Euclidean inner product. Use Gram-Schmidt process to transform the basis vectors $\overline{u}_1 = (1, -3)$, $\overline{u}_2 = (2, 2)$ into an orthonormal basis.

3

Q. 6 (a) Find a matrix
$$P$$
 that diagonalizes $A = \begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$, and determine $P^{-1}AP$.

- (b) (i) Find the geometric and algebraic multiplicity of each eigen value of $A = \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$.
 - (ii) Let $\overline{u} = (u_1, u_2)$, $\overline{v} = (v_1, v_2)$ be vectors in \mathbb{R}^2 . Verify that the weighted Euclidean inner product $\langle \overline{u}, \overline{v} \rangle = 3u_1v_1 + 5u_2v_2$ satisfies the four inner product axioms.
- (c) Given the quadratic equation $x^2 16y^2 + 8x + 128y = 256$. A translation will put the conic in standard position. Name the conic and give its equation in the translated coordinate system.
- Q.7 (a) (i) Find the standard matrix for the stated composition of linear operators on R^2 : (a) A rotation of 60°, followed by an orthogonal projection on the x-axis, followed by a reflection about the line y = x.
 - (b) A dilation with factor k=2, followed by a rotation of 45°, followed by a reflection about the y-axis.
 - (ii) Determine whether the function $T: V \to R$, where V is an inner product space, and T(u) = ||u||, is a linear transformation. Justify your answer.
 - (b) Let $T: R^2 \to R^3$ be the linear transformation defined by $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_2 \\ -5x_1 + 13x_2 \\ -7x_1 + 16x_2 \end{bmatrix}$. Find the matrix for the transformation T with respect to the bases $B = \{\overline{u}_1, \overline{u}_2\}$ for R^2 and $B' = \{\overline{v}_1, \overline{v}_2, \overline{v}_3\}$ for R^3 , where

$$\overline{u}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \ \overline{u}_2 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}, \ \overline{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \ \overline{v}_2 = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}, \ \overline{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}.$$

(c) Show that the linear operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by the equations $w_1 = x_1 + 2x_2$ is one-to-one, and find $T^{-1}(w_1, w_2)$.
