Seat No.:	Enrolment No.

Subject Code: 130001

Instructions:

Subject Name: Mathematics-III

1. Attempt all questions.

Time: 02.30 pm - 05.30 pm

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III • EXAMINATION – WINTER 2013

Date: 05-12-2013

Total Marks: 70

Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 14 **Q.1** Do as directed: (a) Show that $y = be^x + ce^{2x}$ is the solution of $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$. **(b)** Solve the differential equation: $(1 + x^2)dy = xydx$. Solve the initial value problem: y'' + y' - 2y = 0, y(0) = 4 and (c) v'(0) = -5. **(d)** Evaluate the integral $\int_{0}^{\infty} x^{6} e^{-2x} dx$. Prove that $\beta(m,n) = \beta(m,n+1) + \beta(m+1,n)$. **(e) (f)** Find the Laplace transform of $2t^3 + e^{-2t} + t^{\frac{4}{3}}$ **(g)** Find the Inverse Laplace transform of $\frac{3(s^2-1)^2}{2s^5}$. **Q.2** (a) Solve the differential equation by the method of variation of perameter. 07 $\frac{d^2y}{dx^2} + y = \sec x$ Solve the differential equation. $((D^3 + D^2 - D - 1)y = \cos 2x$ (b)(i) 04 Find the orthogonal trajectories of the family $ay^2 = x^3$. (ii) 03 Solve the differential equation. $((D^2 + 4)y = x^2 + \sin 2x)$ 04 (b)(i) The differential equation for a circuit in which self-inductance and (ii) capacitance neutralize each other is $L\frac{d^2i}{dt^2} + \frac{i}{C} = 0$. Find the current i as a 03 Function of time t given that I as the maximum current and i=0 when t=0. Given that $f(t) = \begin{cases} t+1, 0 \le t \le 2 \\ 3, t \ge 2 \end{cases}$ find $L\{f(t)\}$ and $L\{f'(t)\}$. **Q.3** 05 **(b)** 05 Find the Laplace transform of $\frac{1-e^{t}}{t}$ (c) 04 Solve the differential equation $x \frac{dy}{dx} + y = x^3 y^6$. **Q.3** (a) Using convolution theorem , evaluate the following : $L^{-1} \left| \frac{1}{(s+1)(s+3)} \right|$. 05 1

	(b)	By using the method of Laplace transform solve the initial value problem: $y'' + 2y' + y = e^{-t}$, $y(0) = -1$ and $y'(0) = 1$.	05
	(c)	Solve the differential equation $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - 3y = x^2 \log x$.	04
Q.4	(a)	Obtain the Fourier series to represent the function	05
		$f(x) = \frac{1}{4}(\pi - x)^2, 0 < x < 2\pi$.	
	(b)	Find the Fourier series for the function $f(x) = x - x^2$ in the interval	05
		$(-\pi, \pi)$. Deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$	
	(c)	Express the function $f(x) = \begin{cases} \sin x, 0 \le x \le \pi \\ 0, x > \pi \end{cases}$ as a Fourier sine integral and	04
		evaluate $\int_{0}^{\infty} \frac{\sin \lambda x \sin \pi \lambda}{1 - \lambda^{2}} d\lambda.$	
		OR	
Q.4	(a)	Develop f(x) in a Fourier series in the interval (0,2) if $f(x) = \begin{cases} x, 0 < x < 1 \\ 0, 1 < x < 2 \end{cases}$	05
Q.4	(a) (b)	$f(x) = \begin{cases} x, 0 < x < 1 \\ 0, 1 < x < 2 \end{cases}$	05 05
Q.4		$f(x) = \begin{cases} x, 0 < x < 1 \\ 0, 1 < x < 2 \end{cases}$ Find the half range cosine series for $f(x) = e^x \text{ in } (0, 1)$.	
	(b)	$f(x) = \begin{cases} x, 0 < x < 1 \\ 0, 1 < x < 2 \end{cases}$ Find the half range cosine series for $f(x) = e^x$ in $(0,1)$. Find the Fourier sine transform of $f(x) = e^{-2x} + e^{-3x}$, $x > 0$.	05
Q.4 Q.5	(b) (c)	$f(x) = \begin{cases} x, 0 < x < 1 \\ 0, 1 < x < 2 \end{cases}$ Find the half range cosine series for $f(x) = e^x \text{ in } (0, 1)$.	05 04
	(b) (c) (a)	$f(x) = \begin{cases} x, 0 < x < 1 \\ 0, 1 < x < 2 \end{cases}$ Find the half range cosine series for $f(x) = e^x$ in $(0,1)$. Find the Fourier sine transform of $f(x) = e^{-2x} + e^{-3x}, x > 0$. Find a series solution of $y'' + y = 0$ near $x = 0$.	05 04 05
	(b) (c) (a)	$f(x) = \begin{cases} x, 0 < x < 1 \\ 0, 1 < x < 2 \end{cases}$ Find the half range cosine series for $f(x) = e^x$ in $(0,1)$. Find the Fourier sine transform of $f(x) = e^{-2x} + e^{-3x}$, $x > 0$. Find a series solution of $y'' + y = 0$ near $x = 0$. Solve the following by the method of separation of variables:	05 04 05
	(b) (c) (a) (b)	$f(x) = \begin{cases} x, 0 < x < 1 \\ 0, 1 < x < 2 \end{cases}$ Find the half range cosine series for $f(x) = e^x$ in $(0,1)$. Find the Fourier sine transform of $f(x) = e^{-2x} + e^{-3x}, x > 0$. Find a series solution of $y'' + y = 0$ near $x = 0$. Solve the following by the method of separation of variables: $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u, \text{ given that } u(x,0) = 6e^{-3x}.$	05 04 05 05
	(b) (c) (a) (b)	$f(x) = \begin{cases} x, 0 < x < 1 \\ 0, 1 < x < 2 \end{cases}$ Find the half range cosine series for $f(x) = e^x$ in $(0,1)$. Find the Fourier sine transform of $f(x) = e^{-2x} + e^{-3x}, x > 0$. Find a series solution of $y'' + y = 0$ near $x = 0$. Solve the following by the method of separation of variables: $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u, \text{ given that } u(x,0) = 6e^{-3x}.$	05 04 05 05

(a) Find a series solution of differential equation
$$xy'' + 2y' + xy = 0$$
.

(b) A tightly stretched string with fixed ends $x = 0$ and $x = l$ is initially at rest in its equilibrium position i.e. $y(0,t) = 0 = y(l,t)$ for all t and $y(x,0) = 0$

For $0 \le x \le l$. If it set vibrating giving each point a velocity $3x(l-x)$ i.e

$$\left(\frac{\partial y}{\partial t}\right)_{t=0} = 3x(l-x) \text{ for } 0 \le x \le l \text{ ,find the displacement } y(x,t), \text{ where}$$

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}.$$

(c) Show that $\int_{-1}^{1} \frac{p_n(x)}{\sqrt{1-2xt+t^2}} dx = \frac{2}{2n+1}t^n.$
