GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III • EXAMINATION - WINTER 2013

•		Code: 130405 Date: 26-11-2013	
U		Name: Thermodynamics	
		2.30 pm - 05.00 pm Total Marks: 70	
Instru	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a) (b)	What is reversible process? Give an example of reversible process. Define Thermodynamics system, surrounding, state and process. Provide examples of the same also.	07 07
Q.2	(a)	Write a note on Standard heat of reaction, Standard heat of formation, Standard heat of combustion	07
	(b)	Define and discuss thermodynamics. Describe its importance in your engineering field.	07
	(b)	OR Derive the following thermodynamic relationship: $\left(\frac{\partial T}{\partial P}\right)_{s} = \left(\frac{\partial v}{\partial s}\right)_{P}$	07
Q.3	(a) (b)	Define the first law of thermodynamics in its various forms. What are its limitations? Obtain an expression relating T and V in an adiabatic reversible expansion of a gas obeying the equation of state $PV = nRT$.	07 07
Q.3	(a) (b)	OR Give the comparison of work of expansion of an ideal Gas and a van der Waals Gas. What is phase of system? How many phases are present in each of the following systems? a) Mixture of N ₂ , H ₂ and O ₂ .	07 07
		b) A piece of molten ice.c) mixture of monoclinic and rhombic sulphur.	
Q.4	(a) (b)	Explain the concept of entropy change in detail. Write a short note on Reaction coordinate with Diagram. OR	07 07
Q.4	(a)	Derive equation of COP (Coefficient of performance) of carnot refrigerator with neat sketch.	07
	(b)	With neat sketch explain the Vapor compression cycle	07
Q.5	(a)	Give various statements of the second law of thermodynamics.	07
	(b)	Derive steady flow energy equation for systems: 1. Pump and 2. Boiler OR	07
Q.5	(a) (b)	Define third law of thermodynamics. Discuss the importance of third law of thermodynamics. Explain Raoult's law with its deviations.	07 07
