
Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III • EXAMINATION – WINTER 2013

	•	ect Code: 130901 Date: 07-12-2013 ect Name: Circuits and Networks	
		: 02.30 pm - 05.00 pm Total Marks: 70	
IJ	astruc	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1	(a)	 The switch in the circuit shown in figure-1 has been in position 'a' for a long time and v₂ = 0 V. At t=0, the switch is thrown to position 'b'. Calculate; a) L₁v₁ and v₂ for t 2 0° b) The energy stored in capacitor at t=0 c) The energy dissipated in the 5kΩ resistor, if switch remains in position 'b' indefinitely. 	07
	(b)	· · · · · · · · · · · · · · · · · · ·	07
Q.2	(a)	Find the 'Z' parameters for the two port network shown in figure-2. Also find v_2 when $v_g = 50u(t)V_1$	07
	(b)	Show that two magnetically coupled coils connected in parallel can be replaced by a single coil having an inductance of (a) $L_{ab} = \frac{L_a L_b - M^2}{L_a + L_b - 2M}$ (b) if magnetic polarity of the coil 2 is reversed then $L_{ab} = \frac{L_a L_b - M^2}{L_a + L_b + 2M}$	07
	(b)	 In the circuit shown in figure-3 the voltage and current expressions are to 100e^{-1000t} V, t > 0 t = 5e^{-1000t} mA, t ≥ 0 Find; a) R, C and τ (in milliseconds) b) The initial energy stored in the capacitor c) Time required to dissipate 80 % of the initial energy stored in the capacitor (micro seconds). 	07
Q.3	(a)	using the concept of source transformation.	
	(b)	Discuss substitution theorem and steps for solution of a network using this theorem. OR	07
Q.3	` ,	 The voltage and current in the circuit element is 0 = 100 cos (377t - 80°) t = 10 cos (377t + 10°). Identify elements and obtain its value. What is the power loss in 5Ω resistor of figure-5? 	07
	(b)	Find the current in 6Ω resistor in figure-6 using Thevenin's theorem. Verify your result using Norton's theorem.	07
Q.4	(a)	For the circuit shown in figure-7 find the power loss in 0.5Ω and 1Ω resistor. Check power balance in the circuit.	07
	(b)	•	07
Q.4	(a) (b)		07 07
Q.5	(a)	Explain formation of incidence matrix with suitable example. Give properties of incidence matrix.	07
	(b)	Draw the dual of the network shown in figure-10.	07

- **Q.5** (a) With reference to figure-11, draw the graph and write down the tie-set matrix.
 - (b) Establish relationship between fundamental cut-set matrix Q_f , fundamental tie-set **07** matrix B_f and reduce incidence matrix A.

07