Seat No.:		Enrolment No	
		GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI • EXAMINATION – WINTER 2013	
Subject Code: 160305		Code: 160305 Date: 04-12-2013	
Sub	ject [Name: Biomedical Signal Processing	
Tim	e: 02	2:30 pm to 05:00 pm Total Marks: 70	
Instr			
		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
Q.1	3. (a)	Figures to the right indicate full marks. Explain overview of DSP processor Texas Instrument's TMS320. List	07
Q.1	(a)	applications of DSP processors.	07
	(b)	Define signal. Give classification of signals and explain any two in detail with	07
	()	example.	
Q.2	(a)	(i) Enlist various Properties of minimum- phase systems?	03
		(ii) Explain digital signal processing technique used for arrhythmia detection.	04
	(b)	Effects of coefficient Quantization in IIR systems and FIR systems.	07
		OR	
0.2	(b)	* *	07
Q.3	(a)	Consider the design of a low pass type I linear phase FIR filter by means of the	07
		parks McClellan algorithm. Use the alteration theorem to argue that the approximation must decrease monotonically in the don't care region between	
		the pass band and stop band approximation intervals.	
		Hint:- show that all the local maxima and minima of the trigonometric	
		polynomial must be in either the pass band or the stop band to satisfy the	
		alteration theorem.	
	(b)	Explain following properties of Discrete Fourier series	07
		1. Shift of a sequence 2.Duality 3. Periodic convolution	
		OR	
Q.3	(a)	Draw the block diagram representation in direct form ,cascade form and	07
		parallel form for a discrete-time LTI system expressed by the following	
		transfer function: $H(z) = \frac{1}{(1 + \frac{1}{2}z^{-1})(1 - \frac{1}{2}z^{-1})}$	

(b) write a short note on : frequency response for rational system functions **07** Consider two sequences x[n] and h[n] of length 4 given by 07 **Q.4** $x[n] = \cos(\frac{\pi}{2}n)$ n=0,1,2,3 $h[n] = (\frac{1}{2})^n$ n=0,1,2,3(1) Calculate $y[n] = x[n] \otimes h[n]$ by doing the circular convolution directly. (2) Calculate y[n] by DFT. **(b)** Write a short note on: Goertzel Algorithm **07** find the frequency response $H(e^{jw})$ and impulse response h(n) of a causal discrete-time LTI system which is characterized by the difference equation **07 Q.4** given as under: $y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = 2x(n)$ Compare decimation-in-time and decimation –in-frequency FFT algorithms. **07** Q.5 (a) Discuss the Bilinear transformation of IIR filter design? **07** What is Heart Rate Variability (HRV)? How HRV analysis can be done in **07** frequency domain? OR

Discuss window function used in FIR filter design along with important

using the decimation-in-time FFT algorithm

frequency domain characteristics?

Consider a sequence $x[n]=\{1,1,-1,-1,1,1,-1\}$ determine the DFT X[k] of x[n]

Q.5

(a)

07

07