Subject Name: Principles of Process Engineering-III

Subject Code: 160405

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI • EXAMINATION - WINTER 2013

Date: 04-12-2013

Time: 02 Instruction	2:30 pm to 05:00 pm Total Marks: 70	
2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Notations used have their conventional meanings.	
Q.1 (a)	 With reference to humidification operations, define and explain i) Saturated and unsaturated vapor-gas mixtures ii) Molal and mass absolute humidity iii) Percentage and relative humidity iv) Humid heat and enthalpy 	08
(b)	*	06
Q.2 (a)	Define wet-bulb temperature. Derive the expression for wet-bulb depression using concepts of wet-bulb theory, simultaneous heat and mass transfer and Lewis relation. Also, prove that wet-bulb temperature and adiabatic saturation temperature are same for air-water system.	07
(b)	•	07
(b)	A coloured impurity in an aqueous solution is to be removed by adsorption on a decolourizing carbon. It is desired to reduce the colour to 10% of its original value 9.6. Estimate the quantity of fresh carbon required per ton of solution for two stage counter- current operation. The system obeys Freundlich equilibrium isotherm: $Y^* = 8.91 \times 10^{-5} \times 10^{-6}$ Where $Y^* \rightarrow$ equilibrium colour, units/kg solution, $X \rightarrow$ adsorbate concentrations, units/kg carbon Equation for intermediate concentration Y_1 for specified terminal concentrations $Y_0 \text{ and } Y_2 \text{ is given by} \qquad \left(\frac{Y_o}{Y_2} - 1\right) = \left(\frac{Y_1}{Y_2}\right)^{\frac{1}{n}} \left(\frac{Y_1}{Y_2} - 1\right)$	07
Q.3 (a)		07
(b)	, , ,	07
Q.3 (a)	OR Explain in brief McCabe Thiele method used for obtaining theoretical plates required for given degree of separation.	07

- Define reflux ratio and explain in detail about Total, Minimum and Optimum **(b) 07** reflux ratio. **Q.4** Explain Mier's supersaturation theory of crystallization with neat diagram. **07** (a) With the help of diagram, define and explain following types of moistures. **07 (b)** a) Moisture content on dry and wet basis b) Bound and unbound moisture

c) Free and equilibrium moisture

OR

- **Q.4** (a) Mention various crystallizers and discuss any one in detail with neat diagram. **07** Explain positive and negative deviations from ideality – Raoult's law, with 07 **(b)** examples in brief.
- **Q.5** A mixture of benzene and toluene containing 45 mole % benzene is to be 14 separated to give an overhead product of 95 mole % benzene and a bottom product containing 5 mole % benzene. The feed is at its boiling point, and the vapor leaving the column is condensed but not cooled and provides reflux and product. Equilibrium data for mol fractions of benzene in liquid, x and vapor, y is given as follows:

X	0.78	0.581	0.411	0.258	0.130	0.017
y	0.90	0.777	0.632	0.486	0.261	0.039

Using McCabe-Thiele method, calculate:

- (a) Minimum reflux ratio.
- (b) Number of theoretical plates required when total reflux is used.

OR

- Q.5 Classify dryers used in industry. Explain construction, working, advantages, **07** disadvantages and applications of tray dryer with neat sketch.
 - Explain constant rate and falling rate periods in drying. Also, describe different **07** methods to find time of drying in falling rate period.
