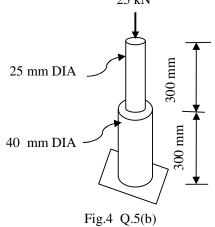
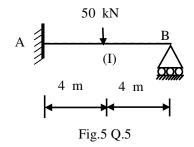

Seat No.:	Enrolment No.


GUJARAT TECHNOLOGICAL UNIVERSITY


BE - SEMESTER-VII • EXAMINATION - WINTER 2013

Subject Code: 170605 Subject Name: Advanced Structural Analysis			Date: 03/12/2013	
•	e: 10	0:30 TO 01:00 Total Man	rks: 70	
insti u	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Take $E=2x10^8$ kN/m², $I=2.0x10^{-5}$ m⁴ , $A=0.0025$ m², $G=0.8x10^8$ kN/m² and $J=4.0x10^{-5}$ m⁴ if not given.	d	
Q.1		Analyse the beam shown in fig.1 using stiffness member approach and plot SF & BM diagrams.	14	
Q.2	(a)		07	
	(b)	truss and one plane frame having symmetry and anti-symmetry. What is descritization? Enlist and explain different factors to be considered for the proper descritization. OR	07	
	(b)	_	07	
Q.3		Analyse a plane frame shown in fig.2 using stiffness member approach and construct BM diagram.	14	
Q.3	(a)	OR Analyse a truss shown in fig.3 using stiffness member approach. All members have same cross sectional area.	07	
	(b)	Determine the elements of the stiffness matrix for a grid member.	07	
Q.4	(a)	Prepare an input file data.in to store data of $n \times n$ size S_{FF}^{-1} matrix and column vector A_{FC} . Prepare C or $C++$ program to read above data and containing function capable to handle the multiplication of these matrices and store result as D_F vector. Write ample input file.	14	
Q.4	(a)	<u> </u>	07	
	(b)	Explain how following issues are handled in analysis (i) Sinking of support (ii) Presence of inclined support.	07	
Q.5	(a)	Determine the shape functions for the Constant Strain Triangle. Use natural coordinate systems.	07	
	(b)		07	
Q.5		For a beam shown in the fig.5, using finite element method, determine: 1. Member end actions 2. Deflection under load.	14	
