Seat No.:	Enrolment No
-----------	--------------

Subject Name: Thermodynamics of Elastomers & polymers

Subject Code: 132603

Instructions:

Time: 02.30 pm - 05.00 pm

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III • EXAMINATION - WINTER • 2014

Date: 30-12-2014

Total Marks: 70

1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. **Q. 1** Answer the following. **(14)** Define the terms:- (i) System (ii) Surroundings (i) Give difference between state function & path function. (ii) State zeroth law of thermodynamics. (iii) Give units of heat. (iv) List the difference between homogeneous process & heterogeneous process. (v) State first law of thermodynamic & its mathematical form. (vi) Give any two differences between low temperature & high temperature (vii) Carbonization. Derive any three Maxwell's thermodynamic relations by using thermodynamic Q. 2 (a) (07)Q. 2 Derive expression for Adiabatic expansion of an ideal gas. (b) (07)Derive relationship between Cp & Cv for ideal gas. (b) (07)Write merits & demerits of Solid fuels over Liquid & Gaseous fuels. Q. 3 (a) (07)Short note on: "Metallurgical coke". (b) (07)Q. 3 Explain the working principle, construction & calculation of Bomb calorimeter (07)(a) with sketch. Define the term: "Calorific value". Explain types of it in detail. (b) (07)0.4 The boiling point of water at 50 atm pressure is 265°C.Compare the theoretical (07)(a) efficiencies of the system of engine operating between 45°C and the boiling point of water at: (i) 1 atm, and (ii) 50 atm. Derive the expression for Helmholtz or work function & prove that Net (07)(b) or useful work = Decrease in free energy. Q. 4 1 mole of an Ideal gas(Cv = 12.471J/K*mol) is heated from 300 K to (07)(a) 600 K. Calculate entropy change when the:(a) volume is kept constant, and (b) pressure is kept constant. Derive expression for Gibbs –Helmholtz equation. (b) (07)Define the term Heat of polymerization & explain in brief about it. O. 5 (a) (07)(b) Derive expression of phase rule. (07)OR List the requirements for the choice of refrigerant. Q. 5 (07)(a) (b) Short note on Polymorphism. (07)*******