Seat No.:	Enrolment No.
-----------	---------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III • EXAMINATION - WINTER • 2014

Subject Name: Applied Physics Time: 02.30 pm - 05.00 pm Total		Code: 133503 Date: 30-12-2014	30-12-2014	
		02.30 pm - 05.00 pm Total Marks: 70		
Inst	2. 3.	Attempt all questions. Make suitable assumptions wherever necessary.		
Q.1	(a)	In Compton effect, considering the elastic collision between a photon and a free	07	
	(b)	electron, write down equations of energy and momentum conservation. Define the de-Broglie concept of matter waves. Describe an experiment to show that the electrons in motion exhibit wavelike properties.	07	
Q.2	(a)	(i) Derive an expression of energy for a particle in a finite potential well.(ii) Write the properties of a wave function.	04 03	
	(b)	Derive the general expression of time independent Schrödinger wave equation in 3 dimensions. Describe all the notations used. OR	03	
	(b)	(i) Write the characteristics of photoelectric effect.	04	
		(ii) Define work function, threshold frequency and photosensitive material.	03	
Q.3	(a)	(i) Draw a block diagram of Cathode Ray Tube. Write any two applications of Cathode Ray Oscilloscope.	05	
	(b)	 (ii) What is Lorentz force? Write down its mathematical expression. (i) Describe the Thomson's method to determine e/m of electron. (ii) State the Faraday's law and Lenz's law of electromagnetic induction. OR 	02 05 02	
Q.3	(a) (b)	Discuss in detail the motion of an electron in uniform magnetic field. Explain with neat diagram the principle, construction and working of cyclotron.	07 07	
Q.4	(a)	Describe principle, working and construction of the Bainbridge mass spectrograph.	07	
	(b)	Explain the physical characteristics of light particles. OR	07	
Q.4	(a) (b)	Explain in detail the Kubleka-Munk color mixing laws. (i) Write a note on light source and illuminants with examples. (ii) Define a black body radiator.	07 05 02	
Q.5	(a)	(i) Define luminosity, gloss, hue and color.	04	
	(b)	(ii) Write a note on color temperature. Discuss and derive the expression for the Beer-Lambert-Bouguer law for dilute solutions. Mention the important limitations of this law. OR	03 07	
Q.5	(a)	(i) Define additive and subtractive color mixing.	04	
	(b)	(ii) What are the three dimensions of the color?(i) Which three attributes are assigned to the color of any object?(ii) Write a note on molecular transitions and related spectroscopic techniques.	03 03 04	
