Seat No.:	Enrolment No.
Seat No.:	Elifolilient No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V • EXAMINATION - WINTER • 2014

An irreversible elementary series reaction $2A \rightarrow B$ is taking place in a constant

volume batch reactor with rate expression $-r_A = kC_A^2$. Derive an expression to

Explain Arhenious theory of temperature dependency along with activation

Date: 03-12-2014

Total Marks: 70

07

07

1

Subject Code: 150403

Instructions:

Q.1

Time: 10.30 am - 01.00 pm

1. Attempt all questions.

determine kinetics of this reaction.

Subject Name: Chemical Reaction Engineering

3. Figures to the right indicate full marks.

energy and temperature sensitivity of reaction.

2. Make suitable assumptions wherever necessary.

Q.2 The reaction $A + B \rightarrow C$ is believed to be second order elementary reaction and 07 following data are recorded at 20 °C using an initial concentration of A and B as 0.106 and 0.123 kmol/m³ respectively. The data is consistent with the proposed rate expression. Find rate constant. 480 870 1500 2280 Time, sec 1 150 C_A , kmol/ $\overline{m^3}$ 0.106 0.099 0.087 0.076 0.062 0.05 Explain Empirical rate equation of nth order method for determination of kinetics of **(b)** 07 reactions. OR **(b)** Explain half life method for determination of kinetics of reactions. 07 **Q.3** (a) Write short note on auto catalytic reactions. 07 Explain variable volume reactor. Derive its expression to find kinetics for first order **(b)** 07 reaction. OR **Q.3** Find the first order rate constant for the disappearance of A in the gas phase 07 mixture, starting with 80 % of A, decreases by 20 % in 3 minute. Explain mechanisms by which non elementary reactions can proceeds. **07 (b) Q.4** (a) Define Recycle ratio R and derive the performance equation for recycle reactor. 07 A liquid reactant stream (1 mo/L) passes through two mixed flow reactors in a 07 series. The concentration of A in the exit of the first reactor is 0.5 mol/L. Find the concentration in the exit stream of second reactor. The reaction is second order with respect to A and V_2/V_1 is 2. OR What do you understand by instantaneous fractional yield and overall fractional yield **Q.4** 07 (a) of a product? Explain different contacting patterns for different concentration of reactant for non-continuous operations. **(b)** Enzyme E catalyses the fermentation of substance A (The reactant) to product R. 07 Find the size of mixed flow reactor needed for 95% conversion of reactant in a feed stream (25 L/min) of reactant(2 mo/L) and enzyme. The kinetics of fermentation at this enzyme concentration is given by $A \rightarrow R$ $-r_A = 0.1 C_A / (1 + 0.5 C_A)$

Q.5	(a)	Derive design equation for mixed flow reactor.	07
	(b)	Write short note on quantitative product distribution.	07
		OR	
Q.5	(a)	Write a short note on optimum temperature progression.	07
	(b)	How mixing of fluid of different composition is the key to the formation of	07
		intermediate for irreversible reactions in series? Discuss in detail the qualitative product distribution for series reaction.	
