Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VIII • EXAMINATION - WINTER • 2014

Subject Code: 180501 Subject Name: Chemical Reaction Engineering-II Time: 02:30 pm - 05:00 pm Instructions: Date: 04-12-201 Total Marks:			4
			rks: 70
2.	Make	pt all questions. suitable assumptions wherever necessary. es to the right indicate full marks.	
Q.1	(a)	Define E, F, & C curves and derive relation between them.	07
Q.2	(b) (a)	Explain linear and non- linear process with examples What are Stimulus response (SR) techniques? List various possible SR techniques used to study the flow in vessels.	07 07
	(b)	A closed vessel has flow for which dispersion number is 0.2, we wish to represent this vessel by tanks in series model. What value of number of tanks should be selected?	07
	(b)	OR Evaluin in detail with diagram different ways of approaching also flow	07
	(b)	Explain in detail with diagram different ways of approaching plug flow	07
Q.3	(a) (b)	Discuss in detail different models for fluid particle reactions. Calculate the time needed to burn to completion the particles of graphite (diameter of particle=12 mm, $\rho_B = 2.2$ gm/cm³, $k_s = 25$ cm/sec) in a 10% oxygen stream. For the higher gas velocity used assume that film diffusion does not offer any resistance to transfer and reaction. The reaction temperature is $900^{\circ}C$.	07 07
0.2	(-)	OR	07
Q.3	(a)	Describe with diagram various contacting patterns for two phase reacting system	07
	(b)	In a uniform environment 4 mm solid particles are 87.5% converted to product in 5 min. The solids are unchanged in size during reaction and ash diffusion step is known to be rate controlling. What mean conversion is obtainable in a fluidized bed reactor operating with same environment but using feed consisting of equal mass of 2 mm and 1 mm particles? The mean residence time of solids in this reactor is 30 minutes.	07
Q.4	(a)	With a neat diagram write about double mixed reactor used for studying kinetics of fluid –fluid reactions.	07
	(b)	Discuss various kinetic regime of mass transfer and reaction for fluid-fluid reactions	07
		OR	
Q.4	(a)	Write about following:i) Film conversion parameterii) Clues to kinetic regimes from solubility data	07
	(b)	Derive rate expression for fast fluid-fluid reactions.	07
Q.5	(a)	Discuss briefly about different types of adsorption processes.	07
ų.s	(a) (b)	Discuss about "Determination of Surface area for catalysts" OR	07
Q.5	(a) (b)	Discuss about nature and mechanism of catalytic reactions Write a brief note on "Experimental reactors for solid catalyzed reactions	07 07
