Seat No.: Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

Diploma Semester –III (Chemical Engg.) Examination January- 2010 Subject code: 330502 Subject Name: Process Heat Transfer

Date: 23 / 01 /2010 Time: 11.00 am – 1.30 pm

Total Marks: 70

T	4		4 •				
۱n	str	117	٠tı	n	n	C'	1
	JUI.	uч	u	v	и	3	•

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. English version Authentic
- Q.1 (a) Define the terms:

 1. Conduction 2. Newton's law 3. Radiation 4. Evaporation
 5. Duhring's Rule 6. Sready State Heat Transfer 7. Forier's law 8.
 Grey body.
 (b) Describe 2-4 heat exchanger.

 Q.2 (a) Derive an equation for steady state heat conduction through composite cylinder up to three layers.
 - (b) 1. Describe drop wise condensation. 2. What is Stefan-Boltzman law. 04

OR

- (b) A furnace wall consist of 200mm of refractory fireclay brick,100mm of kaolin brick, and 6mm of steel plate. The fire side of the refractory is at 1150 °C, and the outside of the steel is at 30°C. The thermal conductivities of refractory fireclay brick is 1.644W/m°C, kaolin brick is 0.086W/m°C and that of steel is 45.34W/m°C. Find the heat loss from a unit area of wall.
- Q.3 (a) Derive an equation for Overall heat transfer coefficient 'U' based on outside area.
 - (b) Write the significance of liquid characteristics in Evaporation. **07**

OR

- Q.3 (a) Derive an equation for 'L M T D'.
 - (b) Write a short note on 'Agitated film evaporators' 07
- Q.4 (a) Define: 1. Kirchoff's law 2. Wein's law 3. Grashoff No. 4. Emmissivity
 (b) Describe counter-current & co-current double pipe heat exchanger.
 08

(

- Q. 4 (a) A triple-effect evaporator is concentrating a liquid that has no appreciable elevation in boiling point. The temperature of the steam to the first effect is 108°C, and the boiling of the solution in the first effect is 52°C. The overall heat transfer coefficient in W/m² °C, are 2500 in the first effect,2000 in the second, and 1500 in the third. At what temperature will the liquid boil in the first and second effects?
 - (b) Write a short note on "Plate type heat exchanger" **06**
- **Q.5** (a) Two large parallel plates are at temperatures T_1 =227 and T_2 = 27 0 C. Their emmissivities are ϵ_1 = 0.85 and ϵ_2 = 0.90. What is the radiant flux between the plates? Take σ = 5.672 x 10 $^{-8}$ W/m² K.
 - (b) Methyl Alcohol flowing in the inner pipe of a double pipe exchanger is cooled with water flowing in the jacket. The inner pipe is made from 25mm O.D.steel having thermal conductivity 45 W/m. O. The individual coefficients and fouling factors are given as hi = 1020, ho = 1700, hdi = 5680, hdo=2840 W/m² O. What is the overall heat transfer coefficient, based on the outside area of the inner pipe?

80

06

07

07

80

80

OR

Q.5	(a)	Aniline is to be cooled from 93 to 66 °C in a double pipe heat exchanger having a total outside area of 6.5m ² . For cooling, a stream of toluene amounting 3900 kg/h at a temperature of 38°C is available. The exchanger consists of 3.2cm O.D. inner pipe in 5cm I.D. outer pipe. The aniline flow rate is 4536 kg/h. Then for counter-current flow find the outlet temperature of toluene, and LMTD.	U 6
	(b)	•	04
	(c)		04
પ્રશ્ન–૧	અ	વ્યાખ્યા આપો. ૧. ઉષ્માવહન ×ઈ ન્યુટનનો નિયમ ૩. ઉષ્મા ગમન ૪. બાષ્પી ભવન ૫.ડુહરીનનો નિયમ ૬. અચળ ઉષ્મા સ્થંળાન્તર ૭. ફોરીયરનો નિયમ ૮.ગ્રે બોડી	08
	બ	ર–૪ પ્રકારના ઉષ્માપવાહકનુ વશન કરો.	06
પ્રશ્ન–૨	અ	ત્રણ પડ્રોવાળા કોમ્પોઝાઈટ નળાકારમાંથી થતા 🔝 અચળ ઉષ્માવહન માટેનુ સુત્ર મેળવો.	07
	બ	(૧) ટપકીય ગલનનુ વશન કરો. (૨) સ્ટીફન –બોલ્ટઝમેન નિયમ શુ છે.	03 04
	બ	અથવા એક ભથ્થી કે જેની દિવાલ ૨૦૦ મીમી રીફ્રેકટરી ફાયર કલે ઈટ ૧૦૦ મીમી કાઓલીન ઈટ, અને દમીમી સ્ટીલની પ્લેટમાંથી બનેલ છે. આગબાજુની રીફ્રેકટરી ફાયર કલે ઈટનુ તાપમાન ૧૧૫૦ ^૦ સે, અને સ્ટીલ બાજુનુ તાપમાન ૩૦ ^૦ સે છે. રીફ્રેકટરી ફાયર કલે ઈટની ઉખ્માવહકતા ૧.૬૪૪, કાઓલીન ઈટની ૦.૦૮૬, અને સ્ટીલની પ્લેટની ૪૫.૩૪ વો/મી. ^૦ સે. છે. દિવાલના એકમ ક્ષેત્રફળમાંથી થતી ઉખ્માનો વ્યય શોધો.	
પ્રશ્ન–૩	અ	બહારના ક્ષેત્રફળ ઉપર આધારીત સમગ્ર ઉષ્મા વહનીય કોયેફ્રીસીયન્ટ 'U' માટેનુ સુત્ર મેળવો.	07
	બ	બાષ્યી ભવન માટેની પ્રવાહીની લાક્ષાણિકતાની ખાસિયત લખો.	07
		અથવા	
પ્રશ્ન–૩	અ	'LMTD' માટેનુ સુત્ર મેળવો.	07
	બ	એજીટેટેડ ફિલ્મ બાષ્ય પાત્ર ઉપ૨ ટૂંકનોંધ લખો.	07
પ્રશ્ન–૪	અ	વ્યાખ્યા આપો. ૧.કિરચોફનો નિયમ ૨. વીનનો નિયમ. ૩. ગ્રેશોફ નં. ૪. એમીસીવીટી.	06
	બ	સમાંન્તર અને સામ સામે પ્રવાહ માટેના ીઘવ્પાઈપ ઉષ્માપવાહકનું વણન કરો.	08
		અથવા	
પ્રશ્ન–૪	અ	ત્રી–અસરવાળા બાષ્ય પાત્ર જેનુ ઉત્કલનબિંદુ ખાસ વધારો થતો નથી એવા પ્રવાહની સાંદ્રતા વધારે છે. પ્રથમ અસરની વરાળનું તાપમાન ૧૦૮ ^૦ સે થાય છે. સમગ્રીય ઉષ્મા સહગુણોત્તર પ્રથમ અસરમાં ૨૫૦૦, બીજી અસરમાં ૨૦૦૦, અને ત્રીજી અસરમાં ૧૫૦૦ વો/મી ^{૨૦} સે છે.પ્રથમ અને બીજી અસરમાં પ્રવાહી કેટલા તાપમાને ઉકળવા માંડશે.	
	બ	્ર ૧૦૦ ૧૦ ૧૦ ૧૦ ૧૦ ૧૦ ૧૦ ૧૦ ૧૦ ૧૦ ૧૦ ૧૦ ૧૦	06
પ્રશ્ન–પ	અ	બે સમાંનત્શ્ર પટટીઓ T_1 = ૨૨૭ $^\circ$ સે અને T_2 = ૨૭ $^\circ$ સે તાપમાને ૨ાખેલ છે. તેઓની એમીસીવીટી અનુક્રમે ૦.૮૫ અને ૦.૯૦ છે. બે પટટીઓ વચ્ચે ૨ેડીયેશન ફલક્ષ કેટલો થશે? σ =5.672 \times 10^{-8} વો/મી 2 $^\circ$ કે છે.	06
	બ	દિવ—પાઈપ પ્રવાહકના અંદરના પાઈપમાંથી વહેતા મિથાઈલ આલ્કોહોલને જેકેટમાં વહેતા પાણી વડે ઠંડો કરવામાં આવે છે. અંદરનો પાઈપ ૨૫ મીમી બહારના વ્યાસવાળા સ્ટીલમાંથી બનેલ છે. સ્ટીલના પાઈપની ઉષ્માવાહકતા ૪૫ વો/મી $^{\circ}$ સે છે. અલગ—અલગ સહગુણોત્તરો અને ફોલીંગ ફેકટરો $hi=1020,\ ho=1700,\ hdi=5680$ અને $hdo=2840$ વો/મી ^{ર $^{\circ}$} સે છે. અંદરના પાઈપના બહારના ક્ષેત્રફળના આધારે સમગ્રીય સહગુણોત્તર કેટલો હશ?	
પ્રશ્ન–પ	અ	અથવા દિવ–પાઈપ ઉષ્માપ્રવાહક કે જેનો બહારનું ક્ષેત્રફળ દ.પમી ^ર છે. તેમાં એનીલીનને ૯૩ ^૦ સે થી ૬૬ ^૦ સે	. 06
4 ~1-4	અ	ાદય-પાઇપ ઉપ્તાધ્યાહક કે જેવા બહારનું હ્વેત્રરુંબ દેવના છે. તેના અનાલાનન હેંક સે વા દર સ સુધી ઠંડુ કરવામાં આવે છે. ઠંડુ કરવા માટે ૩૯૦૦ કિ/કલાકના દરે ટોલ્યુનનો પ્રવાહ ૩૮ ^૦ સે મળી રહે છે. પ્રવાહક ૩.૨ સેમી બહારના વ્યાસવાળા અંદરનો પાઈપ, અને ૫ સેમી અંદરના વ્યાસવાળા બહારના પાઈપમાંથી બનેલ છે. એનીલીનનો પ્રવાહ દર ૪૫૩૬કિ/કલાક છે. તો સામ સામે વહેતા પ્રવાહ માટે બહાર નીકળતા ટીલ્યુનનુ તાપમાન અને LMTD શોધો.	
	બ	મોનોક્રોમેટીક રેડીયેશન શુ છે?	04
	ક	ગરમ પદારથ માટે ઉષ્મા અવાહક શા માટે વાપરમાં આવે છે?	04