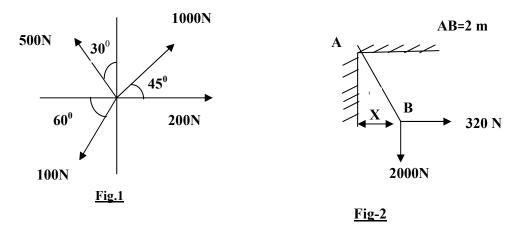
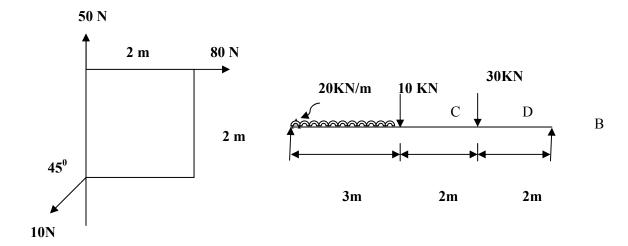
Seat No.: Enrolmer

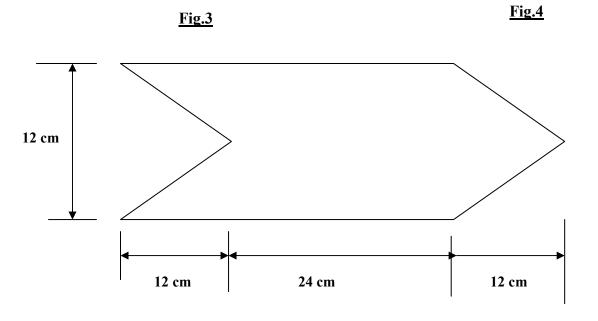
GUJARAT TECHNOLOGICAL UNIVERSITY

Diploma Engineering Semester –I/II Examination Jan. 2012


Subject Name: Engineering Mechanics			te: 17/01/2012 tal Marks: 70	
Q.1	(a) (b)	State and explain "Law of Triangle of forces" Differentiate between (1) Scalar and Vector quantities (2) kinetics and kinematics	03 04	
	(c)	Two tensile forces of 100kN and 80kN are acting at a point with an angle of 120 ⁰ between them. Find magnitude and direction of the resultant force.	07	
Q.2	(a)	Find magnitude and direction of the resultant force of the force system as shown in fig.1.	07	
	(b)	A Body weighing 2000 N is suspended from a vertical wall by a string AB 2m long as shown in fig.2. It is pulled by a horizontal force of 320N. Find tension (T) in the string AB and lateral displacement (x) of the body.	07	
	(b)	Find magnitude, direction and position of the resultant force of the force system as shown in fig.3.	07	
Q.3	(a)	Defferentiate between Moment of a force and Couple.	03	
	(c) (b)	State type of supports. Show direction of reactions with neat sketch. Find support reactions for a beam as shown in fig. 4 OR	04 07	
Q.3	(a) (b)	Find Centroid of the lamina as shown in Fig.5 A pull of P inclined at 30^{0} to the horizontal is necessary to move a wooden block of 250N weight placed on horizontal table. If coefficient of friction $\mu = 0.2$, find pull 'P'	07 07	
Q. 4	(a)	A body is projected vertically upwards with a velocity of 49 m/s from ground. Find (1) Maximum height and time to obtain maximum height (2) Total time when body will return to ground.	04	
	(b)	A body is projected with an initial velocity of 9.8 m/s inside a tunnel of 2.0 m diameter. Find angle of projection and horizontal range.	04	
	(c)	Explain with neat sketch (1) Velocity-Time diagram (2) Super elevation OR	06	
Q. 4	(a)	A water tank of 5000 litre capacity is at a height of 15 m from ground level. If it is required to be filled up by pumping water from ground level in 10 minutes. Find power required for the pump in	07	


	(b)	KW. A flywheel is uniformly retarded from 300 rpm to 60 rpm in 30 seconds. Find angular retardation in rad/sec ² & revolutions made by wheel. During this time.	07
Q.5	(a)	Distinguish between(1)speed&velocity(2)centroid & centre of gravity (3) cenripetal ¢rifugal force(4)resultant force& equilibrant force	08
	(b)	A Truck of mass 2.5 kN runs with a velocity of 36 kmph. Compute its kinetic energy.	06
Q.5	(a)	Define (1) Velocity ratio (2) Mechanical advantage (3) Input of a machine (4) Output of a machine (5)Efficiency (6)Reversible machine	07
	(b)	(7) Self locking machine For a simple lifting machine, Law of machine is P = 0.1W + 3.5. If VR=30.5, find maximum efficiency and maximum mechanical advantage of machine. State whether the machine is reversible or not. Find effort required to lift a load of 50 kN.	07

પ્રશ્ન–૧	અ	બળોનો ત્રિકોણ.નો નિયમ લખો અને સમજાવો.	03
	બ	તફાવત આપો (1) અદિશ અને સદિશ રાશિઓ (2)બળ ગતિવિજ્ઞાન અને શુધ્ધ ગતિવિજ્ઞાન	04
	8	કોઇ એક બિંદુંએ બે તાણ બળો અનુક્રમે 100 kN અને 80 kN એકબીજા સાથે 120 ⁰ ના ખૂણે લાગે છે. તો તેમના પરિણામી બળનું મુલ્ય અને દિશા શોધો.	07
પ્રશ્ન–૨	અ	આકૃતિ-1 માં દશૉવેલ બળ પધ્ધતિ માટે પરિણામી બળનું મુલ્ય અને દિશા શોધો.	07
	બ	એક 2000N વજન ના પદાર્થ ને 2 m લાંબી દોરી AB વડે આફૃતિ-2 માં દર્શાવ્યાપ્રમાણે એક દિવાલ સાથે લટકાવેલ છે. જો તેના પર લગાડવામાં આવતું સમક્ષિતિજબળ 320 N હોયતો દોરીABમાં ઉત્પન્ન થતું તાણબળ (T)અને પદાર્થનું સમક્ષિતિજ સ્થાનાંતર(x) શોધો	07
	બ	અથવા આકૃતિ-3 માં દશૉવેલ બળ પધ્ધતિ માટે પરિણામી બળનું મુલ્ય, દિશા અને સ્થાન શોધો.	07
પ્રશ્ન–૩	અ	બળ ધુર્ણ અને બળ યુગ્મ વચ્ચેનો તફાવત આપો.	03
	બ	બીમ માટે ટેકાના પ્રકાર જણાવો. તેમાં રીએકશન ની દિશા પણ જણાવો.	04
	ક	આકૃતિ-4 માં દશૉવેલ બીમ માટે ટેકાના પ્રતિક્રિયાબળ (રીએકશન)	07


		શોધો.	
		અથવા	
પ્રશ્ન–૩	અ	આકૃતિ-5 માં દશૉવેલ લેમીના (પટલ) માટે ક્ષેત્ર કેંદ્ર શોધો	07
	બ	સમક્ષિતિજ ટેબલ પર પડેલા લાકડાના 250 N વજનના એક	07
		બ્લોકને ખસેડવા માટે સમક્ષિતિજ સાથે 30^{0} નાખુણે લગાડવા પડતા	
		બળ P નું મૂલ્ય શોધો. ધર્ષેણાંક $\mu=0.2$ લો.	
પ્રશ્ન–૪	અ	જમીન પરથી એક પદાર્થને ઉર્ધ્વદીશામાં 49.0 m/sec જેટલા વેગથી	04
		ફેંકવામાં આવેછે.તો(1) પદાર્થે પ્રાપ્ત કરેલ મહત્તમ ઉંચાઇ અને તે	
		માટે લાગતો સમય (2) પદાર્થને જમીન પર પરત આવતાં લાગતો	
		કુલ સમય શોધો.	
	બ	2 m વ્યાસવાળા બોગદામાં એક પદાર્થને 9.8 m/s ના વેગથી ફેકવામાં	04
		આવેછે.તો પ્રક્ષેપકોણ અને સમક્ષિતિજ પરાસ (રેંજ) શોધો.	
	ક	સ્વચ્છ આકૃતિ દ્વારા (1) વેગ-સમય આલેખ અને (2)વક્રપથનો ઉઠાવ	0 6
		સમજાવો.	
		અથવા	
પ્રશ્ન–૪	અ	5000 લિટર ક્ષમતાવાળી પાણીની એક ટાંકી જમીનથી 15 m	07
		ઉંચાઇએ છે.જમીનના લેવલથી પાણીને પમ્પ કરીને આ ટાંકી 10	
		મીનીટમાં પુરી ભરવાની હોયતો તે માટે પમ્પ ની જરૂરી	
		કાર્ચત્વરા(પાવર) KW માં શોધો.	
	બ	કોણીયગતિ કરતું એક ફ્લાયવ્હીલ 30 સેકંડમાં 300 rpm થી 60 rpm	07
		વેગ મન્દન પામે છે. તો કોણીયપ્રતિપ્રવેગ rad/sec² માં અને તે	
		સમય દરમ્યાન તેણે કરેલાં પરિભ્રમણ શોધો	
પ્રશ્ન–પ	અ	ભેદ સ્પ્ષ્ટ કરો(1)ઝડપઅનેવેગ(2)ક્ષેત્રકેન્દ્રઅનેગુરુત્વકેન્દ્ર(3)કેન્દ્રગામી	0 8
		અને કેન્દ્રત્યાગી બળ (4)પરીણામીબળ અને સમતોલકબળ	
	બ		0 6
		ગતિકાર્ચશક્તિ શોધો	
		2491d1	

વ્યાખ્યાઆપો. (1) વેગગુણોત્તર (2)યાંત્રિકફાયદો (3) અર્પિતકાર્ય **07** પ્રશ્ન–પ (4) ઉત્પાદિતકાર્ય (5)કાર્યક્ષમતા(6)પરિવર્તી યંત્ર(7)અપરિવર્તી યંત્ર એક સાદા ઉંચકવાના મશીન નો નિયમ P = 0.1W + 3.5 છે.જો તેનો વેગગુણોત્તર 30.5 હોય તો મહત્તમ્ કાર્યક્ષમતા અને મહત્તમ્ યાંત્રિકફાયદો શોધો. મશીન પરિવર્તી છે કે નહિ તે જણાવો. 50 kN ભાર ઉંચકવા માટે જરૂરી પ્રયત્નબળ શોધો..

SKETCHES

Fig.5