GUJARAT TECHNOLOGICAL UNIVERSITY

Diploma Engineering - SEMESTER - II • EXAMINATION - SUMMER • 2014

Subject Code: 320001 Date: 05-07-2014

Subject Name: Mathematics-II

Time: 10:30 am - 01:00 pm Total Marks: 70

Instructions:

- 1. Attempt ALL questions.
- 2. Make Suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of SIMPLE CALCULATOR is permissible. (Scientific/Higher Version not allowed)
- 5. English version is authentic.
- **Q.1** (a) Fill in the blanks
 - 1 The slope of line x+y-8=0 is -----
 - 2 X intercepts of line 3x+2y-7=0 is -----
 - 3 The distance between the points (0,0) and (1,1) is -----
 - 4 The centre of circle $x^2 + y^2 = 25$ is -----
 - $\lim_{x \to 0} \frac{\tan x}{x} = ----$
 - $\lim_{x \to 0} \frac{3^x 1}{x} = ----$
 - $7 \qquad \int e^{\log_e x} dx = ----+c$
 - **(b)** Do as directed
 - 1. If area of triangle having vertices (2,3),(4,5) and (m,3) is 5 unit find m 04
 - 2. Show that the points (1,2),(2,3) and (0,5) are vertices of Right angled triangle
- Q.2 (a) Do as directed
 - 1. Find the equation of line passing through the point (-1,2) and perpendicular to x-3y+3=0
 - 2. Find the angle between two straight lines x + y = 0 and x y = 0
 - **(b)** Do as directed
 - 1. Find equation of circle with centre (4,3) and passing through the point (7,-2)
 - 2. Find centre and radius of circle $x^2 + y^2 2x + 4y 1 = 0$ 03

OK

- **(b)** Do as directed
- 1. Evaluate: $\lim_{n \to \alpha} \frac{1^2 + 2^2 + 3^2 \dots n^2}{n^3 + 1}$
- 2. If $f(x) = \frac{1-x}{1+x}$ then show that $f(x) + f\left(\frac{1}{x}\right) = 0$
- Q.3 (a) Do as directed
 - 1. If $y = \frac{\sin(\log x)}{x}$ then find $\frac{dy}{dx}$
 - 2. Evaluate: $\lim_{x \to 0} \frac{\sqrt{9+x}-3}{x}$

07

04

	(b)	Do as directed	
	1.	If $y = \frac{x^2 - 1}{x^2 + 1}$ then find $\frac{dy}{dx}$	04
	2.	If $y = x^2 \tan x$ then find $\frac{dy}{dx}$	03
		ax OR	
Q.3	(a)	Do as directed	
	1.	If $x = a(\theta + \sin \theta)$ and $y = (1 - \cos \theta)$ then find $\frac{dy}{dx}$	04
	2.	If $y = \log\left[x + \sqrt{x^2 + a^2}\right]$ then find $\frac{dy}{dx}$	03
	(b)	Do as directed	
	1.	$y = (\sin x)^{\tan x}$ then find $\frac{dy}{dx}$	04
	2.	If $x^3 + y^3 = 3axy$ then find $\frac{dy}{dx}$	03
Q.4	(a)	Do as directed	0.4
	1.	If $y = e^{m \tan^{-1} x}$ then prove that $(1+x^2)\frac{d^2y}{dx^2} + (2x-m)\frac{dy}{dx} = 0$	04
	2.	The motion of particle is given by $s = t^3 + 2t^2 - 3t + 5$ find velocity and acceleration at t=1 sec.	03
	(b)	Do as directed	
	1.	Evaluate: $\int \frac{x^2 + 5x + 6}{x^2 + 2x} dx$	04
	2.	Evaluate: $\int \frac{4 + 3\cos x}{\sin^2 x} dx$	03
0.4	(a)	OR Do as directed	
Q.4	(a) 1.	Do as directed If $y = \log(\sin x)$ then prove that $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 1 = 0$	04
	2.		03
		Find the maximum and minimum value of $f(x) = x + \frac{1}{x}$	
	(b)	Do as directed	
	1.	Evaluate: $\int \frac{e^x (1+x)}{\cos^2(xe^x)} dx$	04
	2.	Evaluate: $\int e^{\sin x} \cos x dx$	03
Q.5	(a)	Do as directed	
	1.	$\frac{\pi^2}{c}$ $\sqrt{\sin x}$	04
		Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$	
	2.	Evaluate: $\int x \log x dx$	03
	(b)	Do as directed	

	1.	Evaluate: $\int_{0}^{1} \frac{x}{x+1} dx$	04
	2.	Using integration Find the area of circle $x^2 + y^2 = a^2$	03
o =		OR	
Q.5	(a) 1.	Do as directed	04
		Evaluate: $\int xe^x dx$	
	2.	Prove that $\int_{0}^{\frac{\pi}{2}} \log \tan x dx = 0$	03
	(b)	Do as directed	
	1.	Evaluate: $\int_{1}^{3} \frac{2x}{1+x^2} dx$	04
	2.	Find the volume of sphere of radius r by the method of integration.	03

Q.1	(a)	ખાલી જગ્યા પૂરો	07
	1	રેખા $x+y-8=0$ નો ઢાળ થાય	
	2	રેખા $3x+2y-7=0$ નો X અક્ષ પરનો અંતઃખંડ થાય	
	3	બિંદુઓ (0,0) અને (1,1) વચ્ચેનું અંતર થાય	
	4	વર્તુળ $x^2 + y^2 = 25$ નું કેન્દ્ર થાય	
	5	$\lim_{x\to 0} \frac{\tan x}{x} =$	
		$x \to 0$ χ	
	6	$\lim_{x \to 0} \frac{3^x - 1}{x} =$	
	7	$\int e^{\log_e x} dx =+c$	
	(b)	સૂચના મુજબ કરો.	
	1.	જો $(2,3),(4,5)$ અને $(m,3)$ શિરોબિંદુવાળા ત્રિકોણનું ક્ષેત્રફળ 5 એકમ હોયતો m શોધો.	04
	2.	સાબિત કરો કે(1,2),(2,3)અને (0,5) કાટકોણ ત્રિકોણનાં શિરોબિંદુઓછે.	03
Q.2	(a)		
~			04
	1.	(-1,2) માંથી પસાર થતી તેમજ રેખા $x-3y+3=0$ ને લંબ રેખાનું સમીકરણ મેળવો.	V -
	2.	સુરેખાઓ $x+y=0$ અને $x-y=0$ વચ્ચેનો ખૂણો શોધો.	03
	(b)	સૂચના મુજબ કરો.	
	1.	(4,3)કેન્દ્રવાળા અને $(7,-2)$ માંથી પસાર થતા વર્તુળનું સમીકરણ મેળવો.	04
	2.	વર્તુળ $x^2 + y^2 - 2x + 4y - 1 = 0$ નું કેન્દ્ર અને ત્રિજ્યા શોધો.	03
	(b)	OR	
		4 3	04
	1.	કિંમત શોધો : $\lim_{n \to \alpha} \frac{1^2 + 2^2 + 3^2 \dots n^2}{n^3 + 1}$	V4

2. જો
$$f(x) = \frac{1-x}{1+x}$$
 તો સબિત કરો કે $f(x) + f\left(\frac{1}{x}\right) = 0$

Q.3 (a) સૂચના મુજબ કરો.

1. જો $y = \frac{\sin(\log x)}{x}$ તો $\frac{dy}{dx}$ મેળવો.

2. કિંમત શીધો : $\lim_{x\to 0} \frac{\sqrt{9+x}-3}{x}$

(b) સૂચના મુજબ કરો.

1. જો $y = \frac{x^2-1}{x^2+1}$ તો $\frac{dy}{dx}$ મેળવો

2. જો $y = x^2\tan x$ તો $\frac{dy}{dx}$ મેળવો

OR

Q.3 (a) સૂચના મુજબ કરો.

1. જો $x = a(\theta + \sin \theta)$ અને $y = (1-\cos \theta)$ તો $\frac{dy}{dx}$ મેળવો.

2. જો $y = \log\left[x + \sqrt{x^2+a^2}\right]$ તો $\frac{dy}{dx}$ મેળવો.

03

(b) સૂચના મુજબ કરો.

1. જો $y = (\sin x)^{\cos x}$ તો $\frac{dy}{dx}$ મેળવો.

04

2. જો $x^3 + y^3 = 3axy$ તો $\frac{dy}{dx}$ મેળવો.

Q.4 (a) સૂચના મુજબ કરો.

1. જો $y = e^{\sin x^3 - x}$ તો સાબિત કરો કે $(1+x^2)\frac{d^2y}{dx^2} + (2x-m)\frac{dy}{dx} = 0$

2. એક કણ ની ગતિનું સમીકરણ $x = t^3 + 2t^2 - 3t + 5$ હોય તો $t = 1$ sec. આગળ તેનો વેગ અને પ્રવેગ શોધો.

(b) સૂચના મુજબ કરો.

1. કિંમત શોધો : $\int \frac{x^2 + 5x + 6}{x^2 + 2x} dx$

OR

Q.4 (a) સૂચના મુજબ કરો.

1. કિંમત શોધો : $\int \frac{x^3 + 5x + 6}{x^2 + 2x} dx$

OR

Q.4 (a) સૂચના મુજબ કરો.

1. જો $y = \log(\sin x)$ તો સાબિત કરો કે $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 1 = 0$

Q.4 (a) સૂચના મુજબ કરો.

1. જો $y = \log(\sin x)$ તો સાબિત કરો કે $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 1 = 0$

Q.4 (a) સૂચના મુજબ કરો.

1. જો $y = \log(\sin x)$ તો સાબિત કરો કે $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 1 = 0$

Q.4 (a) સૂચના મુજબ કરો.

(b) સૂચના મુજબ કરો.

1. કિંમત શોધો : $\int \frac{e^x(1+x)}{\cos^2(xe^x)} dx$

04

	2.	કિંમત શોધો : $\int e^{\sin x} \cos x dx$	03
Q.5		, સૂચના મુજબ કરો.	
	1.	કિંમત શોધો : $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$	04
	2.	કિંમત શોધો : $\int x \log x dx$	03
	(b)	સ્ચના મુજબ કરો.	
	1.	કિંમત શોધો : $\int_{0}^{1} \frac{x}{x+1} dx$	04
	2.	સંકલનની મદદથી વર્તુળ $x^2 + y^2 = a^2$ નું ક્ષેત્રફળ શોધો.	03
		OR	
Q.5	(a)	સૂચના મુજબ કરો.	
	1.	કિંમત શોધો : $\int xe^x dx$	04
	2.	સાબિત કરો કે $\int_{0}^{\frac{\pi}{2}} \log \tan x dx = 0$	03
	(b)	સૂચના મુજબ કરો.	
		કિંમત શોધો : $\int_{1}^{3} \frac{2x}{1+x^2} dx$	04
	2.	સંકલનની મદદથી $_{ m r}$ ત્રિજ્યાવાળા ગોલકનું ધનફળ શોધો.	03
