Sea	at No.:	Enrolment No	-
		NOLOGICAL UNIVERSITY TER-IV • EXAMINATION – SUMMER • 2014	
Subject Code: 3340601		Date: 23-05-2014	
Ti	ibject Name: Structure Mecl ime: 10:30 am - 01:00 pm structions:	nanics - II Total Marks: 70	
	 Attempt all questions. Make suitable assumptions Figures to the right indicate English version is considered 	e full marks.	
Q.1	 (a) Define the following terms 1) Stiffness factor 2) Distribution factor 3) Carry over factor 4) Concept of imaginary 5) Indeterminate beam 6) Relation between Slo 7) Slope of beam 	-	07
	(b) A fixed beam of 8 m span s	abjected to a u.d.l. of 3 kN/m over entire span with kN acting at centre. Calculate net bending moment	07

Q.2 (a) A continuous beam ABC is simply supported at A,B and C. AB= 8 m, BC = 4m. It carries u.d.l. of 10 kN/m over AB and a central point load of 50 kN on BC. Using Clapeyron's theorem, calculate the support moments and draw S.F.D. and B.M.D.

(b) A continuous beam ABCD is fixed at A and supported at B,C and D such that AB = BC= 4m, CD =3m. The entire beam is loaded with 30 kN/m. Using moment distribution method, calculate support moments and draw B.M.D. showing important values.

OR

(b) A continuous beam ABC is fixed at A and simply supported at B and C. AB= 6
 m, BC = 6m. It carries a point load of 48 kN at 3m from A in AB and a u.d.l. of 10 kN/m over BC. Find support moments and draw B.M.D. Solve by moment distribution method. EI is constant.

Q.3 (a) A cantilever beam of 2 m long is carrying a u.d.l. of 16 kN/m over a distance of 1.5 m starting from fixed end. In addition, there is a point load of 20 N acting at free end. Calculate the displacement at free end in terms of EI.

(b) A masonry dam 8m high, 1.5m wide at the top and 3.25m wide at the base has its water face vertical and retains water to a depth of 7m. Calculate the maximum and minimum stress intensities induced at the base, if the unit weight of water is 10 kN/m³ and weight of masonry is 22 kN/m³.

OR

Q.3 (a) For a simply supported beam of size 120 mm X 200 mm and having span 5 m, what point load in kN should be applied at centre to produce a central deflection of 8 mm. Take E= 2X 10⁵ N/mm².

(b) A retaining wall is 0.5m wide at the top and 3.5m wide at bottom and 6m high. It retains earth on one side which is vertical upto the top level. The density of retained earth is 18 kN/m³ and the angle of repose is 35⁰. If the density of masonry of wall is 20 kN/m³, Check the safety of retaining wall against sliding,

07

07

and overturning if coefficient of friction is 0.42.

- 0.4 (a) 1) Define core of section and draw core of section for rectangular and circular **07** section. 2) Explain the stability conditions of the dam. A cast iron column having 13 mm diameter carries an eccentric load such that **07** the maximum stress is 15 percent greater than the mean stress on the column normal to the axis. Determine the eccentricity. Derive limit of eccentricity for a hollow circular cross section and draw a neat 0.4 07 sketch of core of section with measurements. A rectangular column of size 400 mm X 600 mm is acted upon by an eccentric 07 load of 200 kN at one of its corner, find stresses induced at each corner.
- Q.5 (a) In a strained material the resultant intensity of stress across a certain plane is 60 N/mm² (Tensile) inclined at 30° to its normal is acting. The normal intensity of stress on the plane at right angles to the first plane is 30 N/mm² (Tensile). Locate principal planes and find principal stresses.
 - (b) In a strained material two direct stresses of 700 N/mm² and 1200 N/mm² both tensile are acting on certain point of two mutually perpendicular planes along with a shear stress of intensity 300 N/mm². Locate principal planes and find principal stresses using Mohr's circle method.

OR

- Q.5 (a) At a point, there are normal stresses 80 N/mm² (tensile) and 40 N/mm² (compressive) acting on perpendicular planes. Using Mohr's circle find the normal and tangential stresses on a plane making an angle of 40° with the plane on which 80 N/mm² stress acts. Find out the plane on which normal stress is zero.
 - (b) At a point, there are tensile stresses 80 N/mm² and 40 N/mm² acting on two mutually perpendicular planes. Calculate the normal, tangential and resultant stresses on a plane making an angle of 30° with the plane on which 80 N/mm² stress acts using analytical method. Also calculate maximum tangential stress.

ગુજરાતી

- પ્રશ્ન.૧ અ નીચેના પદોની વ્યાખ્યા આપો. (૧) સ્ટીફ્નેસ ફેકટર (૨) ડીસ્ટ્રીબ્યુશન ફેકટર o.o. (૩) કેરી ઓવર ફેકટર (૪) કાલ્પ નિક શૂન્ય ગાળોનો કંસેપ્ટ (૫) ઇનડિટર્મિનેટ બીમ (૬) ઢાળ અને વિચલન માં સંબંધ (૭) બીમ નો ઢાળ
 - બ એક 8 m ગાળા વાળા આબદ્ધ પાટળા ઉપર 3 kN/m નો સમવિતરીત ભાર તેમ **૦૭** જ 10 kN નો મધ્ય બિંદુ ભાર લાગે છે. પાટળા ના મધ્ય માં ચોખ્ખો નમનધૂર્ણ શોધો અને નમનધૂર્ણ આલેખ દોરો.
- પ્રશ્ન. ર અ એક સળંગ પાટળો ABC છે જેમાં AB= 8 m અને BC = 4m છે. ગાળા AB ઉપર **0૭** 10 kN/m નો સમવિતરીત ભાર તેમ જ BC ઉપર 50 kN નો મધ્ય બિંદુ ભાર લાગે છે. ક્લેપીરોંસ થીયરમ નો ઉપયોગ કરીને આ પાટળા માટે કર્તનબળ અને નમનધૂર્ણ આલેખ દોરો.
 - બ એક સળંગ પાટળો ABCD જે છે A બિંદુ આગળ આબદ્ધ છે અને બિંદુ B,C અને **૦૭** D આગળ સાદિ રીતે ટેકવાચેલ છે જેમાં AB = BC= 4m, CD =3m છે. સંપૂર્ણ બીમ પર 30 kN/m નો સમવિતરીત ભાર છે. મોમેંટ ડીસ્ટ્રિબ્યુશન પદ્ધતિનો ઉપયોગ કરી ટેકા નો મોમેંટની ગણતરી કરો અને નમનધૂર્ણ આલેખ દોરો.

અથવા

- બ એક સળંગ પાટળો ABC જે છે A બિંદુ આગળ આબદ્ધ છે અને બિંદુ B અને C 0.9 આગળ સાદિ રીતે ટેકવાયેલ છે જેમાં AB = BC = 6 m છે. આ બીમ AB ઉપર A બિંદુથી 3mના અંતરે 48 kNનો બિંદુભાર લાગે છે અને BC ઉપર10 kN/m નો સમવિતરીત ભાર લાગે છે. મોમેંટ ડીસ્ટ્રિબુશન પદ્ધતિનો ઉપયોગ કરી ટેકા નો મોમેંટની ગણતરી કરો અને નમનધૂર્ણ આલેખ દોરો. EI અયલ રહેશે.
- પ્રશ્ન. 3 અ એક કેંટીલિવર બીમ ગાળો 2 m છે. તેના ઉપર 16 kN/m નો સમવિતરીત ભાર **0૭** આબદ્ધ છેડાથી 1.5 m ના અંતરે લાગે છે. વધારામાં મુક્ત છેડા ઉપર 20 kN નો બિંદુભાર લાગે છે. EI ના રૂપ માં બીમ માં ઉદ્ભવતું મુક્ત છેડા નું વિયલન નું મુલ્ય શોધો.
 - બ એક ટ્રેપોઝોઇડલ મેશનરી ડેમ ની ઉંચાઇ 8m, ટોચ ની પહોળાઇ 1.5m અને **0૭** તળીયાની પહોળાઇ 3.25m છે. તે પોતાની ઊર્ધ્વ સપાટી તરફ 7m ઉંચાઇ સુધીનું પાણી અનુરક્ષિત કરે છે. તેના પાયામાં ઉત્પન્ન થતા મહત્તમ અને ન્યુંતમ પ્રતિબળ શોધો. ડેમ ના મટીરીયલ ની ધનતા 22 kN/m³ અને પાણીની ધનતા 10 kN/m³ લો.

અથવા

પ્રશ્ન. 3 અ સાદી રીતે ટેકવેલ બીમ ની સાઇઝ $120 \text{ mm } \text{X}\ 200 \text{ mm}$ અને ગાળો 5 m નો છે. **૦૭** મધ્યમાં 8 mm ડીફ્લેકશન ઉત્પન્ન કરવા બીમ ની મધ્ય માં કેટલા kN નો બિંદુભાર લગાડવો પડશે? $E=2\text{X}\ 10^5\ \text{N/mm}^2$ લો.

- બ એક ટ્રેપોઝોઇડલ આડછેદ વાળી રીટેઇનીંગ વોલ ટોય ની પહોળાઇ 0.5m, અને **0.9** તળીયાની પહોળાઇ 3.5m અને 6m ઉંચાઇ છે જે પ્રેપ્રી ઉંચાઇ સુધી સોઇલ અનુરક્ષિત કરે છે. જો સોઇલ ની ધનતા 18 kN/m³ અને દિવાલ ના મટીરીયલ ની ધનતા 20 kN/m³ હોય , સોઇલનો એંગલ ઓફ રીપોઝ =35°, μ= 0.42 હોય તો વોલ ની ઉથલી પડવાની તૈયારી, સરકવાની તૈયારી માટે સલામતીની યકાસણી કરો.
- પ્રશ્ન. ૪ અ (૧) કોર ઓફ સેકશનની વ્યાખ્યા આપો અને લંબચોરસ અને વર્તુળાકાર **૦૭** આડછેદ માટે કોર ઓફ સેકશન દોરો. (૨) ડેમ ની સ્થિર સ્થિતિ સમજાવો.
 - બ એક કાસ્ટ આર્ચન કોલમ જેનો વ્યાસ 13 mm છે. કોલમ ઉપર ઉત્કેંદ્રિય ભાર લાગે **0.9** છે જેના લીધે મહત્તમ સ્ટ્રેસની કિંમત સરેરાશ નોર્મલ સ્ટ્રેસ ની કિંમત કરતા ૧૫ %વધારે છે. તો ઉત્કેંદ્રિયતા શોધો.

અથવા

- **પ્રશ્ન.૪ અ** પોલા વર્તુળાકાર આડછેદ માટે ઉત્કેંદ્રિયતા સીમા તારવો અને માપ સાથે કોર **૦૭** ઓક સેકશન માટે આકૃતિ દોરો.
 - બ એક 400 mm X 600 mm માપ ના એક કોલમ ઉપર 200 kN નો ઉત્કેંદ્રિય ભાર **૦૭** તેના કોઇ પણ ખૂણા ઉપર લાગે છે. દરેક ખૂણા ઉપર થતા પ્રતિબળો શોધો.
- પ્રશ્ન.૫ અ એક વિરૂપણ પામેલ પદાર્થમાં કોઇ એક સમતલ ને લંબ દીશા સાથે 30° નો **૦૭** ખૂણો બનાવતું 60 N/mm² નું ટેંસાઇલ સ્ટ્રેસ લાગે છે. પ્રથમ સમતલ ને કાટખૂણેઆવેલ બીજા સમતલ પર લંબ દિશા માં 30 N/mm² ટેંસાઇલ સ્ટ્રેસ લાગે છે. પ્રિંસિપલ પ્લેન ના સ્થાન અને પ્રિંસિપલ સ્ટ્રેસ ની કિંમત શોધો.
 - બ એક વિરૂપણ પામેલ પદાર્થમાં બે એક બીજાને લંબ દિશામાં આવેલ પ્લેન પર તેમની લંબ દિશામાં અનુક્રમે 700 N/mm² અને 1200 N/mm² તણાવ પ્રતિબળ લાગે છે. સાથે આ પ્લેન પર 300 N/mm² શીયર સ્ટ્રેસ પણ લાગે છે. પદાર્થ માં ઉદ્ભવતા પ્રિંસિપલ પ્લેન ના સ્થાન તેમજ તેમની પર લાગતા પ્રિંસિપલ સ્ટ્રેસ ની કિંમત મોહર સર્કલ ના ઉપયોગ કરીને શોધો.

અથવા

- પ્રશ્ન. ૫ અ એક વિરૂપણ પામેલ પદાર્થમાં બે એક બીજાને લંબ દિશામાં આવેલ પ્લેન પર **૦૭** ના કોઇ બિંદુઓ પર બે ડાયરેક્ટ સ્ટ્રેસીસ 80 N/mm² (ટેંસાઇલ)અને 40 N/mm² (દાબ પ્રતિબળ) લાગે છે. મોહર સર્કલનો ઉપયોગ કરીને 80 N/mm² પ્લેન સાથે 40° નો ખૂણો બનાવતા ત્રાસા પ્લેન પર નોર્મલ, ટેંજેંશીયલ અને પરિણામી સ્ટ્રેસ શોધો. તેમજ જે પ્લેન પર નોર્મલ સ્ટ્રેસ શૂન્ય છે આ પ્લેન શોધો.
 - બ એક વિરૂપણ પામેલ પદાર્થમાં બે એક બીજાને લંબ દિશામાં આવેલ પ્લેન પર **૦૭** તેમની લંબ દિશામાં અનુક્રમે 80 N/mm² (ટેંસાઇલ) અને 40 N/mm² (તણાવ

0.9

પ્રતિબળ) લાગે છે. એનાલિટિકલ પદ્ધતિનો ઉપયોગ કરીને 80 N/mm² પ્લેન સાથે 30° નો ખૂણો બનાવતા ત્રાસા પ્લેન પર નોર્મલ, ટેંજેંશીયલ અને પરિણામી સ્ટ્રેસ શોધો.
