Seat No.:	Enrolment No
GUJARAT TECHNOLOGICAL UNIVERSITY Diploma Engineering - SEMESTER-VI • EXAMINATION - WINTER 2013	

Subject Code: 351902 DLM Date: 05-12-2013 **Subject Name: Design of Machine Elements** Time: 10:30 am - 01:00 pm **Total Marks: 70 Instructions:** 1. Attempt any five questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 4. Each question carry equal marks (14 marks) 5. Draw neat sketch where ever required. 6. English version is considered to be Authentic **Q.1** (a) Answer the following questions. 07 i. What are the factors to be considered fo the selection of materials for the design of machine elements. ii. State the various methods to control the effect of stress concentration in machine member. A punch can withstand a safe compressive stress of 300 N/mm². It is used for 07 punching hole of 15mm diameter in plate material which has ultimate shear stress of 120 N/mm². Calculate maximum thickness of plate material through which a hole can be punched. **Q.2** List various failures of a riveted joint. Explain each failure by neat sketch 07 (a) giving equation of each. A cotter joint is to resist an axial load of 40 KN. The allowable stresses are 07 $\sigma_t = 75 \text{ MPa}$, $\tau = 60 \text{ MPa}$ and $\sigma_{cr} = 150 \text{ MPa}$. Find (i.) Diameter of the rod (ii) Diameter of the enlarged end of spigot (iii) Width and thickness of Cotter A Knuckle Joint is to carry a load of 30 KN. If the allowable stresses are σ_t = 07 75 N/mm², $\tau = 60$ N/mm² and bearing pressure for pin is limited to 25 N/mm². Find (i) Diameter of the rod (ii) Diameter of the pin, take 1/dp = 1.25. (iii) Check the pin in shear failure. 07 0.3 Answer the following questions. (a) (i.) State the function of Coupling. List various types of couplings.(03) (ii.)Define "Leaf Spring". State the function of Leaf Spring. A rocker arm has two arms 160 mm & 190 mm in length. The included angle 07 between the arms is 160°. It exerts aan axial load of 4 KN at the valve end at a distance of 160 mm form the fulcrum pin center. If the allowable stresses are $\sigma_t = 70 \text{ MPa}$, $\tau = 55 \text{ MPa}$, $P_{h=10 \text{ MPa}}$. Find (i) Diameter and length of fulcrum pin, if 1/dp = 1.25 (ii) Rectangular cross section of rocker arm near the boss, if h = 2.5tOR **Q.3** (a) Answer the following questions. 07 (03)(i.) State the difference between shaft, axel, and spindle. (ii.) Define Lever. State various types of Lever. (04)Determine Bending Stress induced in a Semi-elliptical leaf spring from the

(b) Determine Bending Stress induced in a Semi-elliptical leaf spring from the following data. (i) Central load = 10 KN (ii)Effective span = 1000 mm (iii) Width of leaves = 60 mm. (iv) Thickness of Leaves = 6 mm (v) Total number of leaves = 10 , including 2 extra full length leaves. Also find deflectin of spring if E = $2 \times 10^5 \text{ MPa}$.

Q.4	(a)	A cover of a steam engine cylinder is secured by means of 10 bolts. The inner diameter of cylinder is 260 mm and maximum steam pressure is 1.20 MPa. If the allowable tensile stress for the bolt material is 60 MPa, find the size of bolt.	07
	(b)	Following data refers to a valve of 4-stroke diesel engine. Length of spring when the valve is closed = 60 mm Length of spring when the valve is open = 50 mm. Load on the spring when the valve is closed = 225 N. Load on the spring when the valve is open = 365 N. Spring Index = 8 Allowable shear stress for spring = 325 N/mm ² Modulus of rigidity = 83 x 10 ³ N/mm ² . Find i. Spring wire diameter. ii. Nos. of coils if ends are squared and ground. iii. Stiffness of spring.	07
Q. 4	(a) (b)	What is eccentric loading? Give at least six machine elements subjected to eccentric loading and draw sketch of any three. A 25 KW motor transmits power at 1000 rpm. The motor has M.S. shaft &	07 07
	(0)	key. If shear and crushing stress for M.S. shaft & key are 40 N/mm ² and 110 N/mm ² respectively Find the width & thickness of key for a length 60 mm.	07
Q.5	(a)	State Lame's theory for radial & circumferential stresses and state assumptions made in Lame's theory.	07
	(b)	The main bearing of a diesel engine is subjected to a load of 20 KN, at 700 rpm. The ratio $d/c = 1000$. If 0.25 KW power is lost in friction, determine the viscosity of lubricating oil. Take journal diameter as 85 mm and bearing length 105 mm.	07
Q.5	(a)	OR Sketch an antifriction bearing and label its different elements. Also state the	07
	(b)	advantages of such bearing. A thin cylindrical shell of 4500 liter capacity is to be designed. The internal pressure is 1.6 MPa and allowable hoop stress is not to exceed 70 MPa for this shell material. Assuming joint efficiency for the shell as 85%. Find the thickness of the spherical shell.	07

		ગુજરાતી	
પ્રશ્ન. ૧	અ	નીચેનાં પ્રશ્નોનાં જવાબા આપો.	0.9
		(i) મશીન ઘટકો ની ડીઝાઇન માટે પદાર્થી ની પસંદગી કરવા માટે કઇ બાબતો	
		ની વિચારણા કરવામાં આવે છે. (03)	
		(ii) મશીનનાં ભાગોમાં સ્ટ્રેસ કોન્સન્ટ્રેશન ની અસરને નિયંત્રીત કરવા માટે જુદા જુદા પગલાં જણાવો. (04)	
	(J	જુદા પગલાં જણાવી. (04) એક પંપ કે જેનું સલામત કોમ્પ્રેસીવ સ્ટ્રેસ 300 N/mm² છે. તેની મદદ થી પ્લેટ	0.9
	•(મટીરીયલ માં 15mm વ્યાસ નું હોલ પાડવામાં આવે છે. જો પ્લેટ ની અલ્ટીમેટ	00
		શીયર સ્ટ્રેસ 120 N/mm^2 હોય તો હોલ પાડવા માટે પ્લેટ ની મહત્તમ જાડાઇ શોધો.	
પ્રશ્ન. ર	અ	રીવેટેડ જોઈંટ ની વિવિધ ફેઇલ્ચોર્સ ગણાવો. સ્વચ્છ આક્રુતિ ની મદદ થી દરેક	೦೨

ફેઇલ્યોર્સ વિષે સમજાવો અને દરેક નાં સૂત્રો લખો.

બ એક કોટર જોઈન્ટ ને 40KN નાં એક્સીયલ લોડનો સામનો કરવાનો છે. માન્ય **૦૭** સ્ટ્રેસીસ $\sigma_t=75$ MPa, $\tau=60$ MPa and $\sigma_{cr}=150$ MPa. છે તો નીચેની વિગતો શોધો. (1) રોડનાં છેડાનો વ્યાસ (2) સ્પીગોટ નાં મોટા છેડાનો વ્યાસ (3) કોટર ની જાડાઇ અને પહોળાઇ.

અથવા

બ એક નકલ જોઇન્ટ ને 30KN નો લોડ લેવાનો છે. માન્ય સ્ટ્રેસીસ $\sigma_t = 75 \, \mathrm{N/mm}^2$, 0.9 $\tau = 60 \text{ N/mm}^2$ અને $\sigma_{br} = 25 \text{ N/mm}^2$ છે. તો નીચેની વિગતો શોધો. (1) રોડનો ડાયામીટર (2) પીનનો ડાયામીટર, અહીં 1/dp=1.25 લો. (3) પીનને શીયર ફેઇલ્ચોર માં ચેક કરો.

અ નીચેનાં પ્રશ્નોનાં જવાબા આપો

(i) કપલીંગનું કાર્ય જણાવો અને જુદા જુદા પ્રકારની કપલીંગ નાં નામ લખો. (03)

ર. લીફ સ્પ્રીંગની વ્યાખ્યા આપો અને તેના કાર્યો જાણાવો. (04)

બ એક રોકર નાં બે આર્મ ની લંબાઇ 160 mm અને 190mm છે. બે આર્મ વચ્ચેનો **૦૭** ખુણો 160∘ છે. તે વાલ્વના છેડે ફલ્ક્રમ પીન થી 160 mm અંતરે 4KN જેટલો મહત્તમ લોડ ઉત્પન્ન કરે છે. જો માન્ય સ્ટ્રેસીસ $\sigma_t = 70 \, \text{MPa}, \, \tau = 55 \, \text{MPa}$, Pb=10 MPa છે તો નીચેની વિગતો શોધો. (i) ફલ્ક્રમ પીન નો ડાયામીટર અને લંબાઇ, I/dp=1.25 છે.(ii) બોસ નજીક રોકર આર્મ નો લંબ ચોરસ આડ છેદ, h=2.5t છે.

અથવા

પ્રશ્ન. 3 અ નીચેનાં પ્રશ્નોનાં જવાબા આપો

0.9

09

- (i) શાક્ટ, એક્સલ અને સ્પિન્ડલ વચ્ચેનો તકાવત જણાવો. (03)
- (ii) લિવર ની વ્યાખ્યા આપો. જુદા જુદા પ્રકાર ના લિવર જણાવો. (04)
- બ નીચેની વિગતો પર થી એક સેમી-ઇલીપ્ટીકલ લીફ સ્પ્રીંગમાં ઉત્પન્ન થતો બેંડીંગ સ્ટ્રેસ શોધો. (i) સેન્ટ્રેલ લોડ = 10 KN (ii) અસરકારક સ્પાન= 1000 mm (iii) લીવ્ઝ ની પહોળાઇ = 60 mm (iv) લીવ્ઝ ની જાડાઇ = 6 mm (v) લીવ્ઝ ની કુલ સખ્યાં = 10, આમાં બે વધારાના ફૂલ લેન્થ લીવ્ઝનો પણ સમાવેશ થાય છે. જો E = 2 x 10⁵ MPa હોય તો સ્પ્રીંગ નું ડીફ્લેક્શન શોધો.
- પ્રશ્ન. ૪ અ એક સ્ટીમ એન્જીન સીલીન્ડર નું કવર 10 બોલ્ટ વડે જોડવામાં આવેલું છે. ૦૭ સીલીન્ડરનો અંદર નો વ્યાસ 260 mm છે અને મહત્તમ સ્ટીમ પ્રેશર 1.20 MPa છે. જો બોલ્ટ માટેનો માન્ય ટેન્સાઇલ સ્ટ્રેસ 60 MPa હોય તો બોલ્ટ ની સાઇઝ શોધો.
 - બ નીચેની વિગતો એક 4-સ્ટ્રોક ડીઝલ એન્જીન ની વાલ્વ સ્પ્રિંગ ને લગતી છે.

0.9

- વાલ્વ બંધ હોય ત્યારે સ્પ્રિંગની લંબાઇ = 60 mm
- વાલ્વ ખુલ્લો હોય ત્યારે સ્પ્રિંગની લંબાઇ = 50 mm
- વાલ્વ બંધ હોય ત્યારે સ્પ્રિંગ ઉપર લાગતો લોડ = 225 N
- વાલ્વ ખુલ્લો હોય ત્યારે સ્પ્રિંગ ઉપર લાગતો લોડ = 365 N
- સ્પ્રિંગ ઇન્ડેક્સ = 8
- સ્પ્રિંગ માટેનો માન્ય શીયર સ્ટ્રેસ = 325 N/mm²
- મોડ્યુલસ ઓફ રીજીડીટી = 83 x 10³ N/ mm² છે, તો નીચેની વીગતો શોધો.
 - 1. સ્પ્રિંગ વાયર ડાયામીટર
 - 2. કોઇલ ની કુલ સંખ્યા જો છેડા સ્ક્વેર અને ગ્રાઉંડ હોય તો.
 - 3. સ્પ્રિંગની સ્ટીફનેસ

અથવા

- પ્રશ્ન. ૪ અ એસેન્દ્રીક લોડીંગ એટલે શું? એસેન્દ્રીક લોડ લાગતો હ્રોય તેવા ઓછા માં ઓછા **૦૭** છ મશીન એલીમેન્ટ નાં નામ દર્શાવો અને ક્રોઇ પણ ત્રણ ની આકૃતિ દોરો.
 - બ એક 25 KW ની મોટર 1000 rpm પર પાવર ટ્રાન્સમીટ કરે છે. મોટર નો શાફ્ટ 09 અને કી બંને માઇલ્ડ સ્ટીલ ના છે. જો માઇલ્ડ સ્ટીલ ના શાફ્ટ અને કી માટે ના શીયર સ્ટ્રેસ અને ક્રશીંગ સ્ટ્રેસ અનુક્રમે 40 MPa અને 110 Mpa હોય તો 60 mm લંબાઇ ની કી માટે તેની પહોળાઇ અને જાડાઇ શોધો.
- પ્રશ્ન. ૫ અ રેડીયલ અને સરકમ્ફરન્શીયલ સ્ટ્રેસ માટે ની લામી ની શીયરી ટુંકમાં જણાવો **૦૭** અને લામી ની શીયરીમાં કરવા મા આવતી ધારણાઓ લખો.
 - બ એક ડીઝલ એન્જીન ની મેઇન બેરીંગ પર 20 KN નો લોડ 700 rpm પર લાગે 0.9 છે. d/c ગુણોત્તર = 1000 છે. જો ધર્ષણ માં 0.25 KW પાવર વ્યય થતો હોય તો ઓઇલ ની વિસ્કોસીટી શોધો. જર્નલ નો વ્યાસ 85 mm અને બેરીંગ ની લંબાઇ 105 mm છે.

અથવા

- પ્રશ્ન.૫ અ એન્ટીફ્રીક્શન બેરીંગ ની સુરેખ ની આકુતિ દોરી તેનાં વિવિધ ભાગો નાં નામ oo દર્શાવો અને આ બેરીંગ ના ફાયદા જણાવો.
 - બ 4500 લીટર ની ક્ષમતા વાળી એક પાટળી સ્ફેરીકલ ટાંકી બનાવવાની છે. પ્રવાહી **09** નું આંતરિક દબાણ 1.6 MPa અને શેલ મટીરિયલ નો મહત્તમ હુપ સ્ટ્રેસ 70 MPa થી વધતો નથી. શેલ ના જોઇંટ ની કાર્યાદક્ષતા 85% હોય તો સ્ફેરીકલ શેલ ની જાડાઇ શોધો.
