Sea	it No.:	Enrolment No	_
	Dipl	GUJARAT TECHNOLOGICAL UNIVERSITY oma Engineering - SEMESTER-III • EXAMINATION – WINTER • 2014	
Su	bject	Code: 331103 Date: 11-12-2014	
Ti	_	Name: Electronics Network and Lines 0:30 am - 01:00 pm Total Marks: 70 ns:	
	1. 2. 3. 4.	T	
Q.1	(a) (b)	State & Prove Maximum Power Transfer Theorem Define the followings: Branch, Mesh, Node, Linear Network, Bilateral Element, Q-Factor, Resonance	07 07
Q.2	(a) (b)	State and prove Thevenin's theorem. Derive equations to convert π -type network into T-type network. OR	07 07
	(b)	Explain Kirchhoff's current & voltage laws with examples.	07
Q.3	(a) (b)	Explain MUTUAL INDUCTANCE & get the equation for "K". A series RLC circuit has R = 30 Ω , L = 0.5 H and C = 5 μ F. Calculate (i) Q- factor, (ii) Band Width (iii) upper cut-off and lower cut-off frequencies.	07 07
Q.3	(a)	For series R-L-C circuit get the equation for resonance frequency. Also	07
	(b)	show that it is an example of voltage amplifier circuit. A coil with R = 10 Ω , L= 0.2 H is connected in parallel with a capacitor C = 20 μ F. Find (i) resonance frequency (ii) Q of coil (iii) band width.	07
Q.4	(a)	Explain Symmetrical Lattice Attenuator With Required Equations.	07
_	(b)	Design a symmetrical π network if R ₀ =600 ohms and D =40 dB. OR	07
Q. 4	(a) (b)	Define Neper & Db. Get The Relation Between Them. Design a symmetrical T attenuator if R ₀ =600 ohms and D =40 dB.	07 07
Q.5	(a) (b)	Give comparison of active filters and passive filters. Explain the loading of telephone cable. OR	07 07

What is duality? Explain using a series R-L-C circuit & required equations.

Q.5

(a)

(b)

for each.

Give classification of filters using definitions and characteristics graphs

07

07

ગુજરાતી

પ્રશ્ન. ૧	અ	મેક્સીમમ પાવર ટ્રાંસફર થીયરમ લખો અને સાબીત કરો.	೦೨
	બ	વ્યાખ્યાયીત કરો: બ્રાંય,મેશ,નોડ,લીનીયર નેટવર્ક,બાઈલેટરલ એલીમેંટ, ક્યુ-	೦೨
		ફેક્ટર,રેઝોનન્સ	
પ્રશ્ન. ર	અ	થેવેનીન્સ થીયરમ લખો અને સાબીત કરો.	೦೨
	બ	પાઈ-ટાઇપ નેટવર્કમાંથી ટી-ટાઇપ નેટવર્કના કન્વર્ઝનના સૂત્રો મેળવો.	೦೨
		અથવા	
	બ	કીર્ચીફના કરંટ અને વોલ્ટેજના નિયમો ઉદાહરણ સાથે સમજાવો.	೦೨
પ્રશ્ન. 3	અ	મ્યુયુઅલ ઇન્ડ્ટ્ન્સ સમજાવો અને "K" નું સમીકરણ મેળવો.	0.9
	બ	સીરીઝ RLC સર્કીટમા R = 30 Ω, L = 0.5 H અને C = 5μF છે. તેમા (1) Q-	೦೨
		ફેક્ટર (2) બેન્ડવીથ (3) અપરકટ ઓફ અને લોવરકટ ઓફ ફ્રીકવન્સી શોધો.	
		અથવા	
પ્રશ્ન. 3	અ	સીરીઝ RLC સર્કીટ માટે રેઝોનન્સ ફ્રીકવન્સીનું સમીકરણ મેળવો. તે	೦೨
		એક વોલ્ટેજ એમ્લીફાયરનું ઉદાહરણ છે તેમ દર્શાવો.	
	બ	પેરેલલ સર્કીટમા લગાવેલ કોઇલમા R = 10 Ω, L= 0.2 H છે. કેપેસીટરનો	09
		કેપેસીટ્ન્સ 20µF છે. તેમા (1) રેઝોનન્સ ફ્રીકવન્સી (2) કોઇલનો Q-ફેક્ટર (3)	
		બેન્ડવીથ શોધો.	
પ્રશ્ન. ૪	અ	સીમેટ્રીકલ લેટાઇસ એટેન્યુટર જરૂરી સમીકરણો સાથે સમજાવો.	೦೨
	બ	જો R₀=600 ohms અને D =40 dB હોય તો સીમેટ્રીકલ π નેટ્વર્ક દોરો.	09
		અથવા	
પ્રશ્ન. ૪	અ	વ્યાખ્યા આપીને DB અને NEPER વચ્ચેનું સમીકરણ મેળવો.	೦೨
	બ	જો R₀=600 ohms અને D =40 dB હોય તો સીમેટ્રીકલ T એટેન્યુટર દોરો.	೦೨
પ્રશ્ન. પ	અ	એક્ટીવ અને પેસીવ ફીલટરની સરખામણી કરો.	೦೨
	બ	ટેલીફોન કેબલનું લોડીંગ સમજાવો.	0.9
		અથવા	
પ્રશ્ન. પ	અ	વ્યાખ્યા આપો અને કેરેક્ટરીસ્ટીકના આલેખ વાપરીને ફીલટરનું વર્ગીકરણ કરો.	೦೨
	બ	ડ્યુઆલીતી એટલે શું? જરૂરી સમીકરણોની મદદથી સીરીઝ R-L-C સર્કીટને	09
		તેની ડ્યુઅલ સર્કીટમાં ફેરવો.	
