Subject code: 331902

Date: 21 /04 2010

GUJARAT TECHNOLOGICAL UNIVERSITY

Diploma Semester -III Remedial Examination April - 2010

Subject Name: THERMODYNAMICS

Time: 03.00 pm – 05.30 pm

Total Marks: 70						
 Instructions: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. English version Authentic 						
Q.1	(a) (b) (c)	Explain thermodynamic equilibrium. Explain quasi static process with neat sketch. Prove that internal energy is a point function.	05 05 04			
Q.2	(a) (b)	Explain the concept of control volume and derive the equation of work for open system. Explain the importance of entropy in thermodynamics and prove that	07 07			
	(b)	OR State kelvin plank and clausis statements with diagram and deduce equivalence between both statements on the basis of diagramatic representation.	07			
Q.3	(a) (b) (c)	A heat engine receives 1500 KJ/Min heat and develops 7KW of power, find out thermal efficiency and rate of heat rejection. Derive expression of workdone during isothermal process. Derive characteristic equation for an ideal gas.	05 05 04			
Q.3	(a)	OR A heat engine operates between a source temperature of 1073 K and sinks temperature of 313 K. What is the least rate of heat rejection per KW net power output of an engine.	05			
	(b) (c)	Derive expression of workdone during isentropic process. Derive $Cp - Cv = R$ with usual notation.	05 04			
Q.4	(a)	0.5 Kg' air is compressed from 1 bar ab. Pressure and 288 K tempreture to 6 bar ab pressure isothermally. Find work done and heat transfer if R=0.287 KJ/Kg K.	05			
	(b) (c)	Derive the equation of air standard efficiency for otto cycle. State limitations of air standard cycles. OR	05 04			
Q. 4	(a)	If the value of universal gas constant is 8.314 Kj/Kg mole K then find the value of characteristic gas constant for N ₂ gas.	05			
	(b) (c)	Derive the equation of air standard efficiency for Brayton cycle. Represent dual cycle on P-V and T-S diagram and indicate different process on it.	05 04			

Q.5	(a) (b) (c)	Explain steam formation at constant pressure with sketch. Draw and explain mollier diagram.	0; 0; 04
Q.5	(a) (b) (c)	OR Derive equation of heat transfer in polytropic process. Draw and explain tripple point diagram of H ₂ O. Explain combined separating and throttling calorimeter with neat sketch.	05 05 04
у . 1	(અ)	થર્મીડાઇનેમિક સમતોલન સમજાવો.	05
	(બ)	ક્વોસી સ્ટેટીક પ્રોસેસ આક્રુતી દોરી સમજાવો.	05
	(8)	સાબિત કરો કે આંતરિક શક્તિ પોઇંટ ફંકશન છે.	04
у . 2	(અ)	કંટ્રોલ વોઅલ્યુમ કોન્સેપ્ટ સમજાવી ઓપન સીસ્ટમ માટે કાર્ય નું સુત્ર મેળવો.	07
	(બ)	એન્ટ્રોપી નુ થર્મોડાયનેમિક્સ માં મહત્વ સમજાવો તથા સાબિત કરો કે એન્ટ્રોપી સીસ્ટમ નો ગુણધર્મ છે.	07
		અથવા	
	(બ)	કેલ્વીન પ્લેંક તથા ક્લોસીયસ વિધાન ચિત્ર સાથે લખો તથા બન્ને વિધાન વચ્ચેની સામ્યતા જરૂરી ડાયાગ્રામ ની મદદ થી સમજાવો.	07
у. 3	(અ)	એક ફીટ એંજીન ને 1500 KJ/Min ફીટ એનર્જી આપવામાં આવે છે તે 7 KW પાવર પેદા કરે છે તો એંજીન ની ઉષ્મિય દક્ષતા અને ઉષ્મા છોડવાનો દર શોધો.	05
	(બ)	આઇસો થર્મલ પ્રક્રિયા માટે કાર્ય નું સુત્ર પ્રસ્થાપિત કરો.	05
	(8)	આદર્શ વાયુ નું લાક્ષણીક સમીકરણ મેળવો.	04
		અથવા	
у. 3	(અ)	એક હીટ એંજીન 1073 K સોર્સ તાપમાન અને 313 K સીન્ક તાપમાન વચ્ચે કામ કરે છે તો એકમ કિલોવોટ નેટવર્ક આઉટપુટ માટે હીટ રીજેક્શન દર શોધો.	05
	(બ)	આઇસેન્ટ્રૉપીક પ્રક્રિયા માટે વર્કનું સુત્ર પ્રસ્થાપિત કરો.	05
	(8)	સાબિત કરોકે $Cp - Cv = R$	04
у. 4	(અ)	0.5Kg હવા જે 1 બાર નીરપેક્ષ દબાણ અને 288 K તાપમાને છે જેને અયળ તાપમાને 6 બાર નીરપેક્ષ દબાણ સુધી દબાવવામાં આવે છે જો R=0.287 KJ/Kg K હોય તો થયેલ કાર્ય તથા હિટ ટ્રાન્સફર ની ગણતરી કરો.	05
	(બ)	ઓટો સાયકલ માટે એર સ્ટાન્ડર્ડ એફીસીયન્સી નું સુત્ર પ્રસ્થાપિત કરો.	05
	(৪)	એર સ્ટાન્ડર્ડ સાયકલ ની મર્યાદાઓ જણાવો.	04

અથવા

У . 4	(અ)	જો યુનિવર્સલ વાયુ અયળાક નુ મુલ્ય 8.314 Kj/Kg mole K હ્રીય તો નાઇટ્રોજન વાયુ માટે લાક્ષણીક અયળાંક શોધો.	05
	(બ)	બ્રેટોન સાયકલ માટે એર સ્ટાન્ડર્ડ એફીસીયન્સી નું સુત્ર પ્રસ્થાપિત કરો.	05
	(8)	ડ્યુઅલ (દ્વેત દહ્ન) સાયકલ P-V અને T-S ડાયાગ્રામ પર દોરી તેમાં જુદી જુદી પ્રક્રીયા ઓ દર્શાવો.	04
y. 5	(અ)	ઓટો સાયકલ દરમ્યાન મહત્તમ કાર્ય માટે ની શરત પ્રસ્થાપીત કરો.	05
	(બ)	અચળ દબાણે વરાળ બનાવવાની પ્રક્રિયા આકુતી સાથે સમજાવો.	05
	(8)	મોલીયર ડાયાગ્રામ દોરી તથા સમજાવો.	04
		અથવા	
у. 5	(અ) (બ) (ક)	પોલીટ્રોપીક પ્રક્રિયા માટે હિટ ટ્રાન્સફર નું સુત્ર પ્રસ્થાપીત કરો. પાણી માટે ટ્રિપલ પોઇંટ ડાયાગ્રામ દોરો તથા સમજાવો. સંયુકત સેપરેટીંગ અને થ્રોટલીંગ કેલોરીમીટર આકુતી સાથે સમજાવો.	05 05 04
