GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER-I • EXAMINATION - WINTER 2013

Subject Code: 2610004 Date: 24-12-2013

Subject Name: Fundamentals of Computer Organization

Time: 02:30 pm TO 05:00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Define the following in one or two lines:

07

- i. Radix.
- ii. Gate
- iii. Flip-flop
- iv. Subcube
- v. Accumulator
- vi. Product Term
- vii. Code Segment(CS)
- (b) i. Convert the Decimal number into Binary and Octal: 2048.0625 02
 - ii. State the commutative and associative laws of Boolean algebra. **02**
 - iii. What is Binary Half-Adder? Give its design diagram and truth 03 table.
- Q.2 (a) Explain the basic components of a Digital Computer with the Block 07 Diagram of Typical Digital Computer.
 - (b) Draw the NAND gate network, AND-to-OR gate network for the output: AB + CD + EF

OR

(b) Using K-map simplify the following expressions in four variables, W, X, Y, and Z: First specify the terms in Product terms and then construct the map for simplification.

$$m_0 + m_2 + m_4 + m_8 + m_9 + m_{10} + m_{11} + m_{12} + m_{13}$$

- Q.3 (a) Write notes on Shift Register with its block diagram and wave diagram.
 (b) Consider the following three-input-variable table and derive SOP and POS
 07
 08
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09
 09<
 - expressions and then simplify them.

INPUTS			OUTPUT
X	Y	Z	A
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

OR

- Q.3 (a) Explain the operations of a Binary Counter with its block diagram and wave diagram.
 - (b) Explain the process of addition using 1's and 2's complement system. 07

- **Q.4** (a) How to make a BCD adder by using full-adders and AND and OR gates? **07** Explain with one example.
 - **(b)** Construct a Multiplexer that selects one input from available 8 inputs. **07** Explain with a block diagram.

OR

- Q.4 (a) Design a decoder which is completely parallel to decode three flip-flops. 07 Explain with its block diagram.
 - (b) Write notes on Dynamic Random-Access Memories with necessary 07 diagrams.
- Q.5 (a) Explain the three different sections of bus. Draw the timing of 07 synchronous data transfers involving the sections.
 - (b) What are the different techniques used in giving memory address to an **07** instruction? Explain any two with examples.

OR

- Q.5 (a) Draw the block diagram of 8086 Microprocessor. Explain its Bus 07 Interfacing Unit.
 - (b) Explain the general format of Instructions of 8086. Give the template for **07** MOV Instruction.
