Seat No.:	Enrolment No.
50at 1 10	Lin official 1 to.

Subject Code: 2610003

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER-I • EXAMINATION - WINTER • 2014

Date: 30-12-2014

Subject Name: Discrete Mathematics for Computer Science (DMCS) Time: 10:30 am - 01:00 pm Total Marks: 70			
	tructio	ons: Attempt all questions. Make suitable assumptions wherever necessary.	
Q.1	(a)	(I) Given $S = \{1, 2, 3, 4, 5\}$ and a relation R on S where $R = \{(x, y)/x + y = 5\}$, What are the properties of the relation R ? (II) Let $X = \{1, 2, 3, 4\}$ and $R = \{(x, y)/x > y\}$	03 04
	(b)	 (i) Draw graph of R. (ii) Write its matrix. (I) Define a group. Show that (I,+), where I is the set of integers and + is Operation of usual addition, is a group. (II) Define a subgroup. Show that \(\{ [1], [4], [13], [16] \}, \times_{17} \) is a subgroup of 	03 04
		$\left\langle Z_{17}^{*}, imes_{17} ight angle$	
Q.2	(a)	(I) State whether following lattices are distributive as well as complemented or not. Justify your answers.	03
		(i) (S_{16}, D) (ii) (S_{45}, D) (II) Draw Hasse diagram of following Posets. (i) $(\rho(A), \subseteq)$ where $A = \{a, b, c\}$ (ii) (S_{36}, D)	04
	(b)	(I) Let $X = \{1, 2, 3, 4, 5, 6, 7\}$ and $R = \{(x, y)/x - y \text{ is divisible 3}\}$ Show that R is an equivalence relation.	04
		(II) Give an example of a set X such that $\langle \rho(X), \subseteq \rangle$ is a chain. OR	03
	(b)	(I) Given a set $S = \{1, 2, 3, 4, 5\}$. Find the equivalence relation on S , which generates the partition $\{\{1,2\}, \{3\}, \{4,5\}\}$.	03
		(II) Let $R = \{(1,2), (3,4), (2,2)\}$ and $S = \{(4,2), (2,5), (3,1), (1,3)\}$, Find $R \circ S$, $S \circ R$, $R \circ R$, $S \circ S$.	04
Q.3	(a)	 (I) Determine the truth value of each of the following statements. (i) 72 > 15 and 33 is a prime integer. (ii) 19 - 4 = 15 or today's temperature is below freezing. (iii) If Mickey is in Florida, then 17 is an odd integer. 	03
		(II) Test the validity of the logical consequences: All dogs fetch. Kitty does not fetch. Therefore Kitty is not a dog.	04
	(b)	(I) Define a cyclic group. Show that $(Z_6, +_6)$ is a cyclic group.	02
		(II) Define (i) A group homomorphism (ii) A group isomorphism. Show that $(Z_4, +_4)$ is isomorphic to (Z_5^*, \times_5)	05
Q.3	(a)	OR (I) Show by truth table that the following statement formula is a tautology:	03
•	` /	$((p \to q) \land (q \to r)) \to (p \to r)$	

(II) Test the validity of the logical consequences:

All men are mortal.

Randy is a man.

Therefore Randy is mortal.

(b) (I) Define an abelian group. Show that in a group (G,*), if for any

03

 $a,b \in G$, $(a*b)^2 = a^2*b^2$ then (G,*) must be abelian.

04

04

- (II) Define kernel of a group homomorphism. Show that the kernel of Homomorphism g is a subgroup of (G,*), where g is a homomorphism from (G,*) to (H,Δ) .
- 0.4 (I) Show that in a lattice (L, \leq) , for any $a, b \in L$, $a \leq b \Leftrightarrow a \oplus b = b$

03

(II) Define a sublattice. Find all sublattices of (S_{10}, D)

04

(I) Show that the following Boolean expressions are equivalent. Obtain **(b)** their sum-of-products canonical form.

03

(i) $(x \oplus y) * (x' \oplus z) * (y \oplus z)$

 $(ii) (x \oplus y) * (x' \oplus z)$

04

(II) Use the Quine - McCluskey method to simplify the sum-of-products expression:

$$f(a, b, c, d) = \sum (10, 12, 13, 14, 15)$$

0.4 (I) Show that in a lattice (L, \leq) , for any $a, b \in L$, $a \leq b \Leftrightarrow a * b = a$

03 04

(II) Define a Boolean Algebra. Show that in a Boolean Algebra,

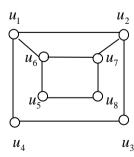
 $(a*b)'=a'\oplus b'$ and $(a\oplus b)'=a'*b'$

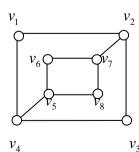
04

(b) (I) Define (i) A join-irreducible element (ii) A meet-irreducible element in a Boolean Algebra. Write all join-irreducible elements and meet-irreducible elements of (S_{30}, D) .

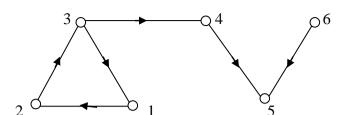
03

(II) Use the Karnaugh map representation to find a minimal sum-of-products expression of following function.

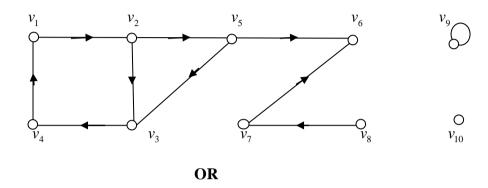

 $f(a, b, c, d) = \sum (0, 1, 2, 3, 12, 14)$

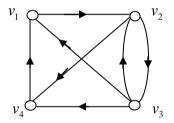

(I) Define a path in graph. Define length of the path. What is difference **Q.5** (a) between a simple path and an elementary path?

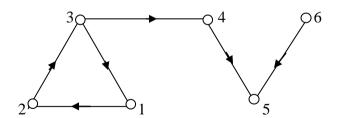
03


(II) Define isomorphic graphs. State whether the following graphs are isomorphic or not.

04




(b) (I) Define a strong component. Write strong components of the digraph given in following figure.


(II) Define a node base. Write node base of the digraph given in following digraph.

Q.5 (a) (I) Define adjacency matrix of the digraph G. Write adjacency matrix of the following digraph.

(II) Define a unilateral component. Write unilateral components of the Graph given in following figure.

- **(b)** (I) Define a complete binary tree. What will be number of terminal nodes In a complete binary tree having 8 edges?
 - (II) Define (i) An m-ary tree.(ii) An ordered tree (iii) A positional m-ary

04

03

03

04

04

03